Infinitely many conservation laws and integrable discretizations for some lattice soliton equations

被引:15
|
作者
Zhu, ZN [1 ]
Xue, WM
Wu, XN
Zhu, ZM
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200030, Peoples R China
[2] Hong Kong Baptist Univ, Dept Math, Kowloon, Hong Kong, Peoples R China
[3] China Coal Econ Coll, Dept Math, Shandong 264005, Peoples R China
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2002年 / 35卷 / 24期
关键词
D O I
10.1088/0305-4470/35/24/307
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, by means of the Lax representations, we demonstrate the existence of infinitely many conservation laws for the general Toda-type lattice equation, the relativistic Volterra lattice equation, the Suris lattice equation and some other lattice equations. The conserved density and the associated flux are given formulaically. We also give an integrable discretization for a lattice equation with n dependent coefficients.
引用
收藏
页码:5079 / 5091
页数:13
相关论文
共 50 条
  • [11] A family of Liouville integrable lattice equations and its conservation laws
    Tang, Lei-Yu
    Fan, Jian-Cong
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (05) : 1907 - 1912
  • [12] ON A NEW CLASS OF COMPLETELY INTEGRABLE NONLINEAR-WAVE EQUATIONS .1. INFINITELY MANY CONSERVATION-LAWS
    NUTKU, Y
    JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (06) : 1237 - 1242
  • [13] Integrable discretizations and soliton solution of KdV and mKdV equations
    Zhang, Yi
    Jin, Li-gang
    Dong, Kang-hui
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (18) : 9555 - 9562
  • [14] A HIERARCHY OF LIOUVILLE INTEGRABLE LATTICE EQUATION ASSOCIATED WITH A THREE-BY-THREE DISCRETE SPECTRAL PROBLEM AND ITS INFINITELY MANY CONSERVATION LAWS
    Li, Yu-Qing
    Xu, Xi-Xiang
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2011, 25 (18): : 2481 - 2492
  • [15] Conservation laws for integrable difference equations
    Rasin, Olexandr G.
    Hydon, Peter E.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (42) : 12763 - 12773
  • [16] Conservation Laws and Analytic Soliton Solutions for Coupled Integrable Dispersionless Equations with Symbolic Computation
    Wang Pan
    Tian Bo
    Liu Wen-Jun
    Qu Qi-Xing
    Jiang Yan
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2010, 54 (04) : 687 - 696
  • [17] Conservation Laws and Analytic Soliton Solutions for Coupled Integrable Dispersionless Equations with Symbolic Computation
    王盼
    田播
    刘文军
    屈启兴
    江彦
    Communications in Theoretical Physics, 2010, 54 (10) : 687 - 696
  • [18] Conservation laws and Darboux transformations for a 3-coupled integrable lattice equations
    Fan, Fangcheng
    Shi, Shaoyun
    Xu, Zhiguo
    MODERN PHYSICS LETTERS B, 2020, 34 (21):
  • [19] Microscopic conservation laws for integrable lattice models
    Benjamin Harrop-Griffiths
    Rowan Killip
    Monica Vişan
    Monatshefte für Mathematik, 2021, 196 : 477 - 504
  • [20] Microscopic conservation laws for integrable lattice models
    Harrop-Griffiths, Benjamin
    Killip, Rowan
    Visan, Monica
    MONATSHEFTE FUR MATHEMATIK, 2021, 196 (03): : 477 - 504