Multidimensional inverse-scattering and Clifford analysis

被引:1
|
作者
Bernstein, S [1 ]
机构
[1] Bauhaus Univ Weimar, Inst Math & Phys, D-99421 Weimar, Germany
关键词
inverse scattering transform; Clifford analysis; Schrodinger-type equation; generalized Cauchy formula;
D O I
10.1016/S0893-9659(02)00081-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a higher-dimensional 5 method based on Clifford analysis. To explain the method we consider, the formal solution of the inverse scattering problem for the n-dimensional time-dependent Schrodinger equations given by Nachman and Ablowitz [1]. Replacing the general complex Cauchy formula by a higher-dimensional analogue, we get rid of the "miracle condition". (C) 2002 Elsevier Science Ltd. All rights reserved,
引用
收藏
页码:1035 / 1041
页数:7
相关论文
共 50 条
  • [31] Microwave Imaging in Stratified Media: A Multifrequency Inverse-Scattering Approach
    Estatico, C.
    Fedeli, A.
    Pastorino, M.
    Randazzo, A.
    2019 13TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2019,
  • [32] The three-dimensional inverse-scattering and inverse-source problems with a planar aperture
    Norton, Stephen J.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2015, 137 (06): : EL443 - EL448
  • [33] A new solution of real-time electromagnetic inverse-scattering
    Zhang Qing-He
    Xiao Bo-Xun
    Zhu Guo-Qiang
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2006, 49 (05): : 1546 - 1551
  • [34] The Inverse-Scattering Problem: The View of a Few-Nucleon Theorist
    Peter U. Sauer
    Few-Body Systems, 2019, 60
  • [35] INVERSE-SCATTERING APPROACH TO FEMTOSECOND SOLITONS IN MONOMODE OPTICAL FIBERS
    MIHALACHE, D
    TORNER, L
    MOLDOVEANU, F
    PANOIU, NC
    TRUTA, N
    PHYSICAL REVIEW E, 1993, 48 (06): : 4699 - 4709
  • [36] AN INVERSE-SCATTERING MODEL FOR AN ALL-OPTICAL LOGIC GATE
    TAMIL, LS
    JORDAN, AK
    JOURNAL OF APPLIED PHYSICS, 1991, 70 (03) : 1882 - 1884
  • [37] CONNECTION BETWEEN DIRAC AND MATRIX SCHRODINGER INVERSE-SCATTERING TRANSFORMS
    JAULENT, M
    LEON, JJP
    LETTERE AL NUOVO CIMENTO, 1978, 23 (04): : 137 - 142
  • [38] The Inverse-Scattering Problem: The View of a Few-Nucleon Theorist
    Sauer, Peter U.
    FEW-BODY SYSTEMS, 2019, 60 (02)
  • [39] MODIFICATION OF THE NEWTON METHOD FOR THE INVERSE-SCATTERING PROBLEM AT FIXED ENERGY
    MUNCHOW, M
    SCHEID, W
    PHYSICAL REVIEW LETTERS, 1980, 44 (20) : 1299 - 1302
  • [40] Solution of the inverse-scattering problem for grazing incidence upon a rough surface
    Spivack, Mark
    Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1992, 9 (08): : 1352 - 1355