A study of the characteristics of white noise using the empirical mode decomposition method

被引:1617
|
作者
Wu, ZH
Huang, NE
机构
[1] Ctr Ocean Land Atmosphere Studies, Beltsville, MD 20705 USA
[2] NASA, Goddard Space Flight Ctr, Lab Hydrospher Proc, Oceans & Ice Branch, Greenbelt, MD 20771 USA
关键词
empirical mode decomposition; intrinsic mode function; characteristics of white noise; energy-density function; energy-density spread function; statistical significance test;
D O I
10.1098/rspa.2003.1221
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Based on numerical experiments on white noise using the empirical mode decomposition (EMD) method, we find empirically that the EMD is effectively a dyadic filter., the intrinsic mode function (IMF) components are all normally distributed, and the Fourier spectra of the IMF components are all identical and cover the same area, on a semi-logarithmic period scale. Expanding from these empirical findings, we further deduce that the product of the energy density of IMF and its corresponding averaged period is a constant, and that the energy-density function is chi-squared distributed. Furthermore, we derive the energy-density spread function of the IMF components. Through these results, we establish a, method of assigning statistical significance of information content for IMF components from any noisy data. Southern Oscillation Index data, are used to illustrate the methodology developed here.
引用
收藏
页码:1597 / 1611
页数:15
相关论文
共 50 条
  • [21] ENSEMBLE EMPIRICAL MODE DECOMPOSITION: A NOISE-ASSISTED DATA ANALYSIS METHOD
    Wu, Zhaohua
    Huang, Norden E.
    ADVANCES IN DATA SCIENCE AND ADAPTIVE ANALYSIS, 2009, 1 (01) : 1 - 41
  • [22] A Gyro Signal Characteristics Analysis Method Based on Empirical Mode Decomposition
    Zeng, Qinghua
    Gu, Shanshan
    Liu, Jianye
    Liu, Sheng
    Chen, Weina
    JOURNAL OF SENSORS, 2016, 2016
  • [23] MEG Data Analysis Using the Empirical Mode Decomposition Method
    Skiteva, Lyudmila
    Trofimov, Aleksandr
    Ushakov, Vadim
    Malakhov, Denis
    Velichkovsky, Boris M.
    BIOLOGICALLY INSPIRED COGNITIVE ARCHITECTURES (BICA) FOR YOUNG SCIENTISTS, 2016, 449 : 135 - 140
  • [24] The Steepest Descent Method Using the Empirical Mode Gradient Decomposition
    Esaulov, Vasiliy
    Sinetsky, Roman
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON APPLIED INNOVATIONS IN IT, 2020, 8 (01): : 49 - 53
  • [25] DEMON spectrum extraction method using empirical mode decomposition
    Liu, Zongwei
    Lu, Liangang
    Yang, Chunmei
    Jiang, Ying
    Huang, Longfei
    Du, Jinyan
    2018 OCEANS - MTS/IEEE KOBE TECHNO-OCEANS (OTO), 2018,
  • [26] Research on Modulation Classification Using Empirical Mode Decomposition Method
    An, Ning
    Li, Bingbing
    Huang, Min
    2010 IEEE INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND INFORMATION SECURITY (WCNIS), VOL 2, 2010, : 211 - 214
  • [27] Decomposition of machining error for surfaces using complete ensemble empirical mode decomposition with adaptive noise
    Chen, Yueping
    Xu, Jiahe
    Tang, Qingchun
    INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2021, 34 (10) : 1049 - 1066
  • [28] Improving the empirical mode decomposition method
    Sanchez, Jose L.
    Trujillo, Juan J.
    APPLICABLE ANALYSIS, 2011, 90 (3-4) : 689 - 713
  • [29] Suppression of Residual Noise From Speech Signals Using Empirical Mode Decomposition
    Hasan, Taufiq
    Hasan, Md. Kamrul
    IEEE SIGNAL PROCESSING LETTERS, 2009, 16 (1-3) : 2 - 5
  • [30] An Efficient Noise Reduction Algorithm Using Empirical Mode Decomposition and Correlation Measurement
    Sun, Tsung-Ying
    Liu, Chan-Cheng
    Jheng, Jyun-Hong
    Tsai, Tsung-Ying
    2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATIONS SYSTEMS (ISPACS 2008), 2008, : 286 - 289