Self-Healing, Adhesive, and Highly Stretchable Ionogel as a Strain Sensor for Extremely Large Deformation

被引:239
|
作者
Zhang, Li Mei [1 ]
He, Yuan [1 ]
Cheng, Sibo [1 ]
Sheng, Hao [1 ]
Dai, Keren [2 ]
Zheng, Wen Jiang [3 ]
Wang, Mei Xiang [3 ]
Chen, Zhen Shan [1 ]
Chen, Yong Mei [1 ,4 ]
Suo, Zhigang [5 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Strength & Vibrat Mech Struct, Sch Aerosp, Xian 710049, Shaanxi, Peoples R China
[2] Nanjing Univ Sci & Technol, ZNDY Ministerial Key Lab, Sch Mech Engn, Nanjing 210094, Jiangsu, Peoples R China
[3] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat Phys, Sch Sci, Xian 710049, Shaanxi, Peoples R China
[4] Shaanxi Univ Sci & Technol, Coll Bioresources Chem & Mat Engn, Natl Demonstrat Ctr Expt Light Chem Engn Educ, Xian 710021, Shaanxi, Peoples R China
[5] Harvard Univ, Kavli Inst Bionano Sci & Technol, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
基金
中国国家自然科学基金; 对外科技合作项目(国际科技项目);
关键词
adhesion; ionogel nanocomposites; self-healing; strain sensors; stretchability; FIBER; POLYMERIZATION; PAPER; SKIN;
D O I
10.1002/smll.201804651
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fabricating a strain sensor that can detect large deformation over a curved object with a high sensitivity is crucial in wearable electronics, human/machine interfaces, and soft robotics. Herein, an ionogel nanocomposite is presented for this purpose. Tuning the composition of the ionogel nanocomposites allows the attainment of the best features, such as excellent self-healing (>95% healing efficiency), strong adhesion (347.3 N m(-1)), high stretchability (2000%), and more than ten times change in resistance under stretching. Furthermore, the ionogel nanocomposite-based sensor exhibits good reliability and excellent durability after 500 cycles, as well as a large gauge factor of 20 when it is stretched under a strain of 800-1400%. Moreover, the nanocomposite can self-heal under arduous conditions, such as a temperature as low as -20 degrees C and a temperature as high as 60 degrees C. All these merits are achieved mainly due to the integration of dynamic metal coordination bonds inside a loosely cross-linked network of ionogel nanocomposite doped with Fe3O4 nanoparticles.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] A Transparent, Self-Healing, Highly Stretchable Ionic Conductor
    Cao, Yue
    Morrissey, Timothy G.
    Acome, Eric
    Allec, Sarah I.
    Wong, Bryan M.
    Keplinger, Christoph
    Wang, Chao
    ADVANCED MATERIALS, 2017, 29 (10)
  • [42] Highly stretchable sustainable electronic skin sensor with real-time self-healing
    Cui, Mengmeng
    Ngoc Nguyen
    Meek, Kelly
    Naskar, Amit
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [43] Highly stretchable, self-healing, self-adhesive and conductive nanocomposite hydrogels based on multi-reversible interactions as multifunctional strain sensors
    Chen, Meijun
    Lei, Kun
    Guo, Pengshan
    Liu, Xin
    Zhao, Pengchao
    Han, Meng
    Cai, Bianyun
    Li, Guangda
    Li, Jinghua
    Cui, Jingqiang
    Wang, Xinling
    EUROPEAN POLYMER JOURNAL, 2023, 199
  • [44] Self-healing, self-adhesive, stretchable and flexible conductive hydrogels for high-performance strain sensors
    Li, Ruirui
    Ren, Jie
    Li, Meng
    Zhang, Minmin
    Li, Yan
    Yang, Wu
    SOFT MATTER, 2023, 19 (30) : 5723 - 5736
  • [45] Underwater Self-Healing and Recyclable Ionogel Sensor for Physiological Signal Monitoring
    Zhao, Ye
    Wang, Fangfang
    Liu, Jingying
    Gan, Dingli
    Lei, Bing
    Shao, Jinjun
    Wang, Wenjun
    Wang, Qian
    Dong, Xiaochen
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (23) : 28664 - 28674
  • [46] Self-Healing, Self-Adhesive Silk Fibroin Conductive Hydrogel as a Flexible Strain Sensor
    Zheng, Haiyan
    Lin, Nan
    He, Yanyi
    Zuo, Baoqi
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (33) : 40013 - 40031
  • [47] Highly stretchable, environmentally stable, self-healing and adhesive conductive nanocomposite organohydrogel for efficient multimodal sensing
    Sun, Hongling
    Han, Yupan
    Huang, Mengjie
    Li, Jianwei
    Bian, Ziyu
    Wang, Yalong
    Liu, Hu
    Liu, Chuntai
    Shen, Changyu
    CHEMICAL ENGINEERING JOURNAL, 2024, 480
  • [48] Highly Stretchable, Transparent, Solvent-Resistant Multifunctional Ionogel with Underwater Self-Healing and Adhesion for Wearable Strain Sensors and Barrier-Free Information Transfer
    Peng, Hui
    Yang, Fan
    Tang, Ying
    Wang, Xin
    Li, Yue
    Xie, Pengyun
    Ma, Guofu
    Lei, Ziqiang
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (40) : 54673 - 54684
  • [49] Highly Stretchable and Conductive Self-Healing Hydrogels for Temperature and Strain Sensing and Chronic Wound Treatment
    Zhang, Jieyu
    Wu, Can
    Xu, Yuanyuan
    Chen, Jiali
    Ning, Ning
    Yang, Zeyu
    Guo, Yi
    Hu, Xuefeng
    Wang, Yunbing
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (37) : 40990 - 40999
  • [50] Highly Stretchable and Sensitive Strain Sensor based on Ionogel/Ag Synergistic Conductive Network
    Sun, Jingxian
    Yuan, Yixin
    Lu, Guoqiang
    Xue, Tanlong
    Nie, Jun
    Lu, Yan
    ADVANCED MATERIALS INTERFACES, 2022, 9 (11)