Durability of slag waste incorporated steel fiber-reinforced concrete in marine environment

被引:41
|
作者
Kim, Seungwon [1 ]
kim, Yongjae [1 ]
Usman, Muhammad [2 ]
Park, Cheolwoo [1 ]
Hanif, Asad [3 ]
机构
[1] Kangwon Natl Univ, Dept Civil Engn, 346 Jungang Ro, Samcheok Si 25913, Gangwon Do, South Korea
[2] Natl Univ Sci & Technol, Sch Civil & Environm Engn, Sect H-12, Islamabad, Pakistan
[3] Univ Macau, Inst Appl Phys & Mat Engn, Ave Univ, Taipa, Macau, Peoples R China
关键词
Steel fiber-reinforced concrete; GGBS; Durability; Service life prediction; Sustainable development; BLAST-FURNACE SLAG; RECYCLED AGGREGATE CONCRETE; CHLORIDE-ION PENETRATION; FLY-ASH; COMPRESSIVE STRENGTH; PROPERTIES ENHANCEMENT; MECHANICAL-PROPERTIES; HARDENED PROPERTIES; CEMENT; RESISTANCE;
D O I
10.1016/j.jobe.2020.101641
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this study, slag waste was incorporated as cement replacement in steel fiber reinforced concrete (SFRC), and the subsequent effect on durability in marine environment is investigated. Two replacement ratios (30% and 50%) of slag were used, and the corresponding properties pertaining to chloride ion penetration were determined by NT Build 492. Long term behavior under marine environment exposure was also evaluated by immersing the concrete specimens in seawater at the East Sea of South Korea. Also, probabilistic methods were employed to predict service life of the developed concretes based on chloride attack. The results clearly indicated that GGBS incorporation leads to improved durability attributes as indicated by reduced penetration depth and lower migration coefficient of chloride ions for all GGBS incorporated specimens. The long-term durability evaluation also corroborated the beneficial effects of GGBS on concrete durability. Further, the probabilistic service life assessment showed that GGBS addition led to significantly higher (more than seven times) service life, as set by the criterion of chloride ion penetration up to 50 mm. The usefulness of GGBS in improving durability of plain as well as steel fiber reinforced concrete points towards effective waste utilization in construction and building materials with improved durability and service life in marine environment.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Fracture energy of steel fiber-reinforced concrete
    Barros, JAO
    Cruz, JS
    MECHANICS OF COMPOSITE MATERIALS AND STRUCTURES, 2001, 8 (01): : 29 - 45
  • [22] Shear strength of steel fiber-reinforced concrete
    Mirsayah, AA
    Banthia, N
    ACI MATERIALS JOURNAL, 2002, 99 (05) : 473 - 479
  • [23] STRENGTH AND DURABILITY PROPERTIES OF WASTE STEEL SLAG MIXED CONCRETE
    Warudkar, Abhijit
    Elavenil, S.
    ENGINEERING REVIEW, 2022, 42 (01) : 36 - 45
  • [24] Performance of Steel Fiber-Reinforced Concrete Pipes
    Abolmaali, A.
    Mikhaylova, A.
    Wilson, A.
    Lundy, J.
    TRANSPORTATION RESEARCH RECORD, 2012, (2313) : 168 - 177
  • [25] Constitutive modeling of steel fiber-reinforced concrete
    Moradi, Mahdi
    Bagherieh, Ali Reza
    Esfahani, Mohammad Reza
    INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, 2020, 29 (03) : 388 - 412
  • [26] Permeability of cracked steel fiber-reinforced concrete
    Rapoport, J
    Aldea, CM
    Shah, SP
    Ankenman, B
    Karr, A
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2002, 14 (04) : 355 - 358
  • [27] Mechanical properties of steel fiber-reinforced concrete
    Thomas, Job
    Ramaswamy, Ananth
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2007, 19 (05) : 385 - 392
  • [28] Durability of Steel Fiber-Reinforced Concrete Containing SiO2 Nano-Particles
    Zhang, Peng
    Li, Qingfu
    Chen, Yuanzhao
    Shi, Yan
    Ling, Yi-Feng
    MATERIALS, 2019, 12 (13)
  • [29] Bond Durability of FRP Bars Embedded in Fiber-Reinforced Concrete
    Belarbi, Abdeldjelil
    Wang, Huanzi
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2012, 16 (04) : 371 - 380
  • [30] SHRINKAGE CRACKING AND DURABILITY CHARACTERISTICS OF CELLULOSE FIBER-REINFORCED CONCRETE
    SARIGAPHUTI, M
    SHAH, SP
    VINSON, KD
    ACI MATERIALS JOURNAL, 1993, 90 (04) : 309 - 318