Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications

被引:414
|
作者
Wu, J. [1 ]
Shu, C. [1 ]
机构
[1] Natl Univ Singapore, Dept Mech Engn, Singapore 119260, Singapore
关键词
Immersed boundary method; Lattice Boltzmann method; Velocity correction; Incompressible flow; Numerical simulation; Non-slip boundary condition; CIRCULAR-CYLINDER; INCOMPRESSIBLE FLOWS; NUMERICAL-SIMULATION; FLUID-FLOWS; EQUATION;
D O I
10.1016/j.jcp.2008.11.019
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A version of immersed boundary-lattice Boltzmann method (IB-LBM) is proposed in this work. It is based on the lattice Boltzmann equation with external forcing term proposed by Guo et al. [Z. Guo, C. Zheng, B. Shi, Discrete lattice effects on the forcing term in the lattice Boltzmann method, Phys. Rev. E 65 (2002) 046308], which can well consider the effect of external force to the momentum and momentum flux as well as the discrete lattice effect. In this model, the velocity is contributed by two parts. One is from the density distribution function and can be termed as intermediate velocity, and the other is from the external force and can be considered as velocity correction. In the conventional IB-LBM, the force density (external force) is explicitly computed in advance. As a result, we cannot manipulate the velocity correction to enforce the non-slip boundary condition at the boundary point. In the present work, the velocity corrections (force density) at all boundary points are considered as unknowns which are computed in such a way that the non-slip boundary condition at the boundary points is enforced. The solution procedure of present IB-LBM is exactly the same as the conventional IB-LBM except that the non-slip boundary condition can be satisfied in the present model while it is only approximately satisfied in the conventional model. Numerical experiments for the flows around a circular cylinder and an airfoil show that there is no any penetration of streamlines to the solid body in the present results. This is not the case for the results obtained by the conventional IB-LBM. Another advantage of the present method is its simple calculation of force on the boundary. The force can be directly calculated from the relationship between the velocity correction and the force density. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1963 / 1979
页数:17
相关论文
共 50 条
  • [41] An adaptive immersed boundary-lattice Boltzmann method for simulating a flapping foil in ground effect
    Wu, J.
    Qiu, Y. L.
    Shu, C.
    Zhao, N.
    Wang, X.
    COMPUTERS & FLUIDS, 2015, 106 : 171 - 184
  • [42] Simulation of Thermal Flow Problems via a Hybrid Immersed Boundary-Lattice Boltzmann Method
    Wu, J.
    Shu, C.
    Zhao, N.
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [43] An immersed boundary-lattice Boltzmann method for electro-thermo-convection in complex geometries
    Hu, Yang
    Li, Decai
    Niu, Xiaodong
    Shu, Shi
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2019, 140 : 280 - 297
  • [44] Simulating particle sedimentation in a flowing fluid using an immersed boundary-lattice Boltzmann method
    Liu, Shenggui
    Tang, Songlei
    Lv, Mindong
    Zhao, Yuechao
    Li, Yingjun
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2020, 34 (01) : 39 - 49
  • [45] Numerical modeling and analysis of yarn-end-capturing based on the immersed boundary-lattice Boltzmann method
    Gaoping, Xu
    Yujie, Chen
    Yize, Sun
    Yujing, Zhang
    Yunkui, Sun
    APPLIED MATHEMATICAL MODELLING, 2024, 129 : 70 - 87
  • [46] Simulation of Particle-Fluid Interaction in Fractal Fractures Based on the Immersed Boundary-Lattice Boltzmann Method
    Liu, Shenggui
    Tang, Songlei
    Huang, Jinkuang
    Lv, Mindong
    Li, Yingjun
    GEOFLUIDS, 2020, 2020
  • [47] A bounce back-immersed boundary-lattice Boltzmann model for curved boundary
    Wang, Zhengdao
    Wei, Yikun
    Qian, Yuehong
    APPLIED MATHEMATICAL MODELLING, 2020, 81 : 428 - 440
  • [48] Hydrodynamic resolved simulation of a char particle combustion by immersed boundary-lattice Boltzmann method
    Jiang, Maoqiang
    Ma, Kuang
    Li, Jing
    Liu, Zhaohui
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2022, 132
  • [49] Wall-modeled large eddy simulation in the immersed boundary-lattice Boltzmann method
    Wang, Li
    Liu, Zhengliang
    Jin, Bruce Ruishu
    Huang, Qiuxiang
    Young, John
    Tian, Fang-Bao
    PHYSICS OF FLUIDS, 2024, 36 (03)
  • [50] The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems
    Feng, ZG
    Michaelides, EE
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 195 (02) : 602 - 628