Uniform analytic solutions for fractional Navier-Stokes equations

被引:6
|
作者
Lou, Zhenzhen [1 ,3 ]
Yang, Qixiang [2 ]
He, Jianxun [1 ]
He, Kaili [1 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[3] Qujing Normal Univ, Sch Math & Stat, Qujing 655011, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional Navier-Stokes equations; Fourier-Herz spaces; Uniform analyticity;
D O I
10.1016/j.aml.2020.106784
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present the existence of the uniform analytic solution of the Cauchy problem for fractional incompressible Navier-Stokes Equations in critical Fourier-Herz spaces. The main strategies are to prove that the existence of the uniform analytic solution is equivalent to the boundedness of convolution inequality on Herz space. (c) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] On the time-fractional Navier-Stokes equations
    Zhou, Yong
    Peng, Li
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) : 874 - 891
  • [42] Fractional Navier-Stokes Equations With Delay Conditions
    Ben Tahir, Hachem
    Melliani, S.
    Elomari, M.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42 : 15 - 15
  • [43] Infinitely many Leray-Hopf solutions for the fractional Navier-Stokes equations
    De Rosa, Luigi
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2019, 44 (04) : 335 - 365
  • [44] Existence and holder continuity of solutions for time-fractional Navier-Stokes equations
    Zhou, Yong
    Peng, Li
    Huang, Yunqing
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (17) : 7830 - 7838
  • [45] GENERATION AND SOLUTIONS TO THE TIME-SPACE FRACTIONAL COUPLED NAVIER-STOKES EQUATIONS
    Lu, Chang-Na
    Chang, Sheng-Xiang
    Xie, Luo-Yan
    Zhang, Zong-Guo
    THERMAL SCIENCE, 2020, 24 (06): : 3899 - 3905
  • [46] The convergence of the solutions of the Navier-Stokes equations to that of the Euler equations
    Temam, R
    Wang, X
    APPLIED MATHEMATICS LETTERS, 1997, 10 (05) : 29 - 33
  • [47] Mild Solutions for the Time-Fractional Navier-Stokes Equations with MHD Effects
    Abuasbeh, Kinda
    Shafqat, Ramsha
    Niazi, Azmat Ullah Khan
    Awadalla, Muath
    SYMMETRY-BASEL, 2023, 15 (02):
  • [48] Weak solutions of the time-fractional Navier-Stokes equations and optimal control
    Zhou, Yong
    Peng, Li
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) : 1016 - 1027
  • [49] Partially regular weak solutions to the fractional Navier-Stokes equations with the critical dissipation
    Yang, Jiaqi
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (11)
  • [50] ANALYTIC REGULARITY FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN POLYGONS
    Marcati, Carlo
    Schwab, Christoph
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (03) : 2945 - 2968