Residual coordinates over one-dimensional rings

被引:1
|
作者
El Kahoui, M'hammed [1 ]
Essamaoui, Najoua [1 ]
Ouali, Mustapha [1 ]
机构
[1] Cadi Ayyad Univ, Fac Sci Semlalia, Dept Math, POB 2390, Marrakech, Morocco
关键词
Local coordinate; Polynomial automorphism; Residual coordinate; VARIABLES; MODULES;
D O I
10.1016/j.jpaa.2020.106629
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a noetherian ring Rand n >= 2, it is well-known that residual coordinates of the polynomial algebra R-[n] are m-stable coordinates for some m >= 1, that is they become coordinates in the larger polynomial algebra R[n+m]. In this paper we prove that, over a large class of noetherian one-dimensional rings, m = 1 is enough. This includes affine algebras over an algebraically closed field as well as noetherian complete local rings containing a field. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Associated graded rings of one-dimensional analytically irreducible rings
    Barucci, V.
    Froberg, R.
    JOURNAL OF ALGEBRA, 2006, 304 (01) : 349 - 358
  • [22] Collective coordinates in one-dimensional soliton models revisited
    Takyi, I.
    Weigel, H.
    PHYSICAL REVIEW D, 2016, 94 (08)
  • [24] Spin interference in silicon one-dimensional rings
    Bagraev, N. T.
    Galkin, N. G.
    Gehlhoff, W.
    Klyachkin, L. E.
    Malyarenko, A. M.
    Shelykh, I. A.
    PHYSICS OF SEMICONDUCTORS, PTS A AND B, 2007, 893 : 693 - +
  • [25] Spin interference in silicon one-dimensional rings
    Bagraev, N. T.
    Galkin, N. G.
    Gehlhoff, W.
    Klyachkin, L. E.
    Malyarenko, A. M.
    Shelykh, I. A.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NANOSCIENCE AND TECHNOLOGY, 2007, 61 : 56 - 60
  • [26] SERRES PROBLEM FOR ONE-DIMENSIONAL GROUND RINGS
    GREITHER, C
    JOURNAL OF ALGEBRA, 1982, 75 (01) : 290 - 295
  • [27] ABSOLUTE SATURATION OF ONE-DIMENSIONAL LOCAL RINGS
    LIPMAN, J
    AMERICAN JOURNAL OF MATHEMATICS, 1975, 97 (03) : 771 - 790
  • [28] A length inequality for one-dimensional local rings
    Delfino, D
    Leer, L
    Muntean, R
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (05) : 2555 - 2564
  • [29] Symmetries of One-Dimensional Fluid Equations in Lagrangian Coordinates
    Kaewmanee, Chompit
    Meleshko, Sergey, V
    MODERN TREATMENT OF SYMMETRIES, DIFFERENTIAL EQUATIONS AND APPLICATIONS (SYMMETRY 2019), 2019, 2153
  • [30] Spin interference in silicon one-dimensional rings
    T Bagraev, N.
    Galkin, N. G.
    Gehlhoff, W.
    Klyachkin, L. E.
    Malyarenko, A. M.
    Shelykh, I. A.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (45) : L567 - L573