Critical parameters for non-hermitian Hamiltonians

被引:5
|
作者
Fernandez, Francisco M. [1 ]
Garcia, Javier [1 ]
机构
[1] UNLP, CCT La Plata CONICET, INIFTA, Div Quim Teor, RA-1900 La Plata, Buenos Aires, Argentina
关键词
PT symmetry; Non-hermitian Hamiltonians; Critical parameters; Exceptional points; Diagonalization method; EXCEPTIONAL POINTS; SQUARE-WELL; SPONTANEOUS BREAKDOWN; SYMMETRY; OPERATOR;
D O I
10.1016/j.amc.2014.08.083
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We calculate accurate critical parameters for a class of non-hermitian Hamiltonians by means of the diagonalization method. We study three one-dimensional models and two perturbed rigid rotors with PT symmetry. One of the latter models illustrates the necessity of a more general condition for the appearance of real eigenvalues that we also discuss here. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:141 / 151
页数:11
相关论文
共 50 条
  • [21] Non-Hermitian Hamiltonians and stability of pure states
    Zloshchastiev, Konstantin G.
    EUROPEAN PHYSICAL JOURNAL D, 2015, 69 (11):
  • [22] CPT-Frames for Non-Hermitian Hamiltonians
    曹怀信
    郭志华
    陈峥立
    Communications in Theoretical Physics, 2013, 60 (09) : 328 - 334
  • [23] Real Spectra of Isospectral Non-Hermitian Hamiltonians
    Rath, B.
    Mallick, P.
    Samal, P. K.
    AFRICAN REVIEW OF PHYSICS, 2014, 9 : 201 - 205
  • [24] Non-Hermitian dynamics of slowly varying Hamiltonians
    Wang, Hailong
    Lang, Li-Jun
    Chong, Y. D.
    PHYSICAL REVIEW A, 2018, 98 (01)
  • [25] Husimi Dynamics Generated by non-Hermitian Hamiltonians
    Holmes, Katherine
    Rehman, Wasim
    Malzard, Simon
    Graefe, Eva-Maria
    PHYSICAL REVIEW LETTERS, 2023, 130 (15)
  • [26] Non-Hermitian Hamiltonians in decoherence and equilibrium theory
    Castagnino, Mario
    Fortin, Sebastian
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (44)
  • [27] The quantum brachistochrone problem for non-Hermitian Hamiltonians
    Assis, Paulo E. G.
    Fring, Andreas
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (24)
  • [28] Algebraic analysis of non-Hermitian quadratic Hamiltonians
    Fernandez, Francisco M.
    ANNALS OF PHYSICS, 2023, 457
  • [29] Non-Hermitian Hamiltonians of Lie algebraic type
    Assis, Paulo E. G.
    Fring, Andreas
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (01)
  • [30] Algebraic treatment of non-Hermitian quadratic Hamiltonians
    Fernandez, Francisco M.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 58 (09) : 2094 - 2107