Formal Frobenius manifold structure on equivariant cohomology

被引:0
|
作者
Cao, KD [1 ]
Zhou, J [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a closed Kahler manifold with a Hamiltonian action of a connected compact Lie group by holomorphic isometries, we construct a formal Frobenius manifold structure on the equivariant cohomology by exploiting a natural DGBV algebra structure on the Cartan model.
引用
收藏
页码:535 / 552
页数:18
相关论文
共 50 条
  • [21] EQUIVARIANT BUNDLES AND COHOMOLOGY
    KOZLOWSKI, A
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 296 (01) : 181 - 190
  • [22] HOLOMORPHIC EQUIVARIANT COHOMOLOGY
    LIU, KF
    MATHEMATISCHE ANNALEN, 1995, 303 (01) : 125 - 148
  • [23] Supergeometry in equivariant cohomology
    Nersessian, A
    SUPERSYMMETRIES AND QUANTUM SYMMETRIES, 1999, 524 : 90 - 96
  • [24] Equivariant cohomology and sheaves
    Yang, Haibo
    JOURNAL OF ALGEBRA, 2014, 412 : 230 - 254
  • [25] DELOCALIZED EQUIVARIANT COHOMOLOGY
    BAUM, P
    BRYLINSKI, JL
    MACPHERSON, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 300 (17): : 605 - 608
  • [26] TORSION IN EQUIVARIANT COHOMOLOGY
    ADEM, A
    COMMENTARII MATHEMATICI HELVETICI, 1989, 64 (03) : 401 - 411
  • [27] Equivariant K-theory and equivariant cohomology
    Rosu, I
    Knutson, A
    MATHEMATISCHE ZEITSCHRIFT, 2003, 243 (03) : 423 - 448
  • [28] Equivariant K-theory and equivariant cohomology
    Ioanid Rosu
    Mathematische Zeitschrift, 2003, 243 : 423 - 448
  • [29] Equivariant Manifold Flows
    Katsman, Isay
    Lou, Aaron
    Lim, Derek
    Jiang, Qingxuan
    Lim, Ser-Nam
    De Sa, Christopher
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [30] Hochschild cohomology of Frobenius algebras
    Guccione, JA
    Guccione, JJ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (05) : 1241 - 1250