Quadratic Chabauty for modular curves and modular forms of rank one

被引:6
|
作者
Dogra, Netan [1 ]
Le Fourn, Samuel [2 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
[2] Univ Grenoble Alpes, CNRS, F-38000 St Martin Dheres, IF, France
关键词
AUTOMORPHIC L-FUNCTIONS; ABELIAN-VARIETIES; RATIONAL-POINTS; TRIPLE PRODUCT; GROSS-ZAGIER; DERIVATIVES; THEOREM; VALUES; CYCLE;
D O I
10.1007/s00208-020-02112-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we provide refined sufficient conditions for the quadratic Chabauty method on a curve X to produce an effective finite set of points containing the rational points X(Q), with the condition on the rank of the Jacobian of X replaced by condition on the rank of a quotient of the Jacobian plus an associated space of Chow-Heegner points. We then apply this condition to prove the effective finiteness of X( Q) for any modular curve X = X-0(+) ( N) or X-ns(+)(N) of genus at least 2 with N prime. The proof relies on the existence of a quotient of their Jacobians whose Mordell-Weil rank is equal to its dimension (and at least 2), which is proven via analytic estimates for orders of vanishing of L-functions of modular forms, thanks to a Kolyvagin-Logachev type result.
引用
收藏
页码:393 / 448
页数:56
相关论文
共 50 条
  • [21] QUADRATIC POINTS ON BIELLIPTIC MODULAR CURVES
    Najman, Filip
    Vukorepa, Borna
    MATHEMATICS OF COMPUTATION, 2023, 92 (342) : 1791 - 1816
  • [22] CONCENTRATION OF POINTS ON MODULAR QUADRATIC FORMS
    Zumalacarregui, Ana
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (07) : 1835 - 1839
  • [23] Drinfeld Modular Forms of Arbitrary Rank
    Basson, Dirk
    Breuer, Florian
    Pink, Richard
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 304 (1531)
  • [24] Quadratic minima and modular forms II
    Brent, B
    ACTA ARITHMETICA, 2001, 96 (04) : 381 - 387
  • [25] On Drinfeld modular forms of higher rank
    Gekeler, Ernst-Ulrich
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2017, 29 (03): : 875 - 902
  • [26] ORTHOGONAL DECOMPOSITION OF MODULAR QUADRATIC FORMS
    GERSTEIN, LJ
    INVENTIONES MATHEMATICAE, 1972, 17 (01) : 21 - &
  • [27] THE MODULAR EQUATION AND MODULAR-FORMS OF WEIGHT ONE
    HIRAMATSU, T
    MIMURA, Y
    NAGOYA MATHEMATICAL JOURNAL, 1985, 100 : 145 - 162
  • [28] Modular subgroups, forms, curves and surfaces
    Sebbar, A
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2002, 45 (02): : 294 - 308
  • [29] On signatures of elliptic curves and modular forms
    Andrzej Dąbrowski
    Jacek Pomykała
    Sudhir Pujahari
    The Ramanujan Journal, 2023, 60 : 505 - 516
  • [30] On signatures of elliptic curves and modular forms
    Dabrowski, Andrzej
    Pomykala, Jacek
    Pujahari, Sudhir
    RAMANUJAN JOURNAL, 2023, 60 (02): : 505 - 516