Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms

被引:165
|
作者
Edmunds, DE [1 ]
Kerman, R
Pick, L
机构
[1] Univ Sussex, Sch Math Sci, Brighton BN1 9QH, E Sussex, England
[2] Brock Univ, Dept Math, St Catharines, ON L2S 3A1, Canada
[3] Acad Sci Czech Republ, Inst Math, CR-11567 Prague 1, Czech Republic
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
D O I
10.1006/jfan.1999.3508
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let rn and n be positive integers with n greater than or equal to 2 and 1 less than or equal to m less than or equal to n-1. We study rearrangement-invariant quasinorms rho(R) and rho(D) on functions f :(0, 1) --> R such that to each bounded domain R in R-n, with Lebesgue measure \Omega\, there corresponds C = C(\Omega\) > 0 for which one has the Sobolev imbedding inequality rho(R)(u*(\Omega\ t)) less than or equal to C rho(D)(\del(m)u\*(\Omega\ t)), u is an element of C-0(m)(Omega), involving the nonincreasing rearrangements of u and a certain, mth order gradient of tl. When In = 1 we deal, in fact, with a closely related imbedding inequality of Talenti, in which rho(D) need not be rearrangement-invariant, rho R(u*(\Omega\ t)) less than or equal to C rho(D)((d/dt) integral ({x is an element of Rn:\u(x)\ > u*(\Omega\ t)})\(del u)(x)\dx), u is an element of C-0(1)(Omega). In both cases we are especially interested in when the quasinorms are optimal, in the sense that rho(R) cannot be replaced by an essentially larger quasinorm and rho(D) cannot be replaced by an essentially smaller one. Our results yield best possible refinements of such (limiting) Sobolev inequalities as those of Trudinger, Strichartz, Hansson, Brezis,and Wainger. (C) 2000 Academic Press.
引用
收藏
页码:307 / 355
页数:49
相关论文
共 50 条
  • [1] Compactness of Sobolev imbeddings involving rearrangement-invariant norms
    Kerman, Ron
    Pick, Lubos
    STUDIA MATHEMATICA, 2008, 186 (02) : 127 - 160
  • [2] Can optimal rearrangement invariant sobolev imbeddings be further extended?
    Curbera, Guillermo P.
    Ricker, Werner J.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (03) : 1479 - 1497
  • [3] On a rearrangement-invariant function set that appears in optimal Sobolev embeddings
    Pustylnik, Evgeniy
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (02) : 788 - 798
  • [4] Explicit formulas for optimal rearrangement-invariant norms in Sobolev imbedding inequalities
    Kerman, Ron
    Pick, Lubos
    STUDIA MATHEMATICA, 2011, 206 (02) : 97 - 119
  • [5] On compactness of Sobolev embeddings in rearrangement-invariant spaces
    Pustylnik, Evgeniy
    FORUM MATHEMATICUM, 2006, 18 (05) : 839 - 852
  • [6] Compactness properties of Sobolev imbeddings for rearrangement invariant norms
    Curbera, Guillermo P.
    Ricker, Werner J.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (04) : 1471 - 1484
  • [7] Sobolev embeddings, rearrangement-invariant spaces and Frostman measures
    Cianchi, Andrea
    Pick, Lubos
    Slavikova, Lenka
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2020, 37 (01): : 105 - 144
  • [8] Sobolev embeddings, rearrangement-invariant spaces and Frostman measures
    Cianchi, Andrea
    Pick, Luboš
    Slavíková, Lenka
    Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, 2020, 37 (01): : 105 - 144
  • [9] Poincaré-Sobolev inequalities with rearrangement-invariant norms on the entire space
    Zdeněk Mihula
    Mathematische Zeitschrift, 2021, 298 : 1623 - 1640
  • [10] Symmetric gradient Sobolev spaces endowed with rearrangement-invariant norms
    Breit, Dominic
    Cianchi, Andrea
    ADVANCES IN MATHEMATICS, 2021, 391