Sobolev embeddings, rearrangement-invariant spaces and Frostman measures

被引:12
|
作者
Cianchi, Andrea [1 ]
Pick, Lubos [2 ]
Slavikova, Lenka [2 ,3 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
[2] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 18675 8, Czech Republic
[3] Univ Missouri, Dept Math, Columbia, MO 65211 USA
关键词
Sobolev inequalities; Frostman measures; Ahlfors regular measures; Rearrangement-invariant spaces; Lorentz spaces; INEQUALITIES; OPERATORS; INTERPOLATION; MODULUS; HOLDER; COMPACTNESS; SYMMETRY; THEOREMS;
D O I
10.1016/j.anihpc.2019.06.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Sobolev embeddings, of arbitrary order, are considered into function spaces on domains of R-n endowed with measures whose decay on balls is dominated by a power d of their radius. Norms in arbitrary rearrangement-invariant spaces are contemplated. A comprehensive approach is proposed based on the reduction of the relevant n-dimensional embeddings to one-dimensional Hardy-type inequalities. Interestingly, the latter inequalities depend on the involved measure only through the power d. Our results allow for the detection of the optimal target space in Sobolev embeddings, for broad families of norms, in situations where customary techniques do not apply. In particular, new embeddings, with augmented target spaces, are deduced even for standard Sobolev spaces. (C) 2019 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:105 / 144
页数:40
相关论文
共 50 条
  • [1] Sobolev embeddings, rearrangement-invariant spaces and Frostman measures
    Cianchi, Andrea
    Pick, Luboš
    Slavíková, Lenka
    Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, 2020, 37 (01): : 105 - 144
  • [2] On compactness of Sobolev embeddings in rearrangement-invariant spaces
    Pustylnik, Evgeniy
    FORUM MATHEMATICUM, 2006, 18 (05) : 839 - 852
  • [3] Absolutely Continuous Embeddings of Rearrangement-Invariant Spaces
    Fernandez-Martinez, Pedro
    Manzano, Antonio
    Pustylnik, Evgeniy
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2010, 7 (04) : 539 - 552
  • [4] Absolutely Continuous Embeddings of Rearrangement-Invariant Spaces
    Pedro Fernández-Martínez
    Antonio Manzano
    Evgeniy Pustylnik
    Mediterranean Journal of Mathematics, 2010, 7 : 539 - 552
  • [5] On a rearrangement-invariant function set that appears in optimal Sobolev embeddings
    Pustylnik, Evgeniy
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (02) : 788 - 798
  • [6] Symmetric gradient Sobolev spaces endowed with rearrangement-invariant norms
    Breit, Dominic
    Cianchi, Andrea
    ADVANCES IN MATHEMATICS, 2021, 391
  • [7] Sobolev Embeddings for Fractional Hajlasz-Sobolev Spaces in the Setting of Rearrangement Invariant Spaces
    Martin, Joaquim
    Ortiz, Walter A.
    POTENTIAL ANALYSIS, 2023, 59 (03) : 1191 - 1204
  • [8] Optimal Rearrangement Invariant Sobolev Embeddings in Mixed Norm Spaces
    Clavero, Nadia
    Soria, Javier
    JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (04) : 2930 - 2954
  • [9] Optimal Rearrangement Invariant Sobolev Embeddings in Mixed Norm Spaces
    Nadia Clavero
    Javier Soria
    The Journal of Geometric Analysis, 2016, 26 : 2930 - 2954
  • [10] Subspaces of rearrangement-invariant spaces
    Hernandez, FL
    Kalton, NJ
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1996, 48 (04): : 794 - 833