Effect of spin-orbit coupling on spin transport at graphene/transition metal interface

被引:2
|
作者
Mandal, Sumit [1 ]
Akhtar, Abu Jahid [1 ]
Shaw, Bikash Kumar [1 ]
Saha, Shyamal K. [1 ]
机构
[1] Indian Assoc Cultivat Sci, Dept Mat Sci, Kolkata 700032, India
来源
关键词
spin-orbit coupling; graphene; transition metal; spin transport; magnetoconductance; GRAPHENE NANORIBBONS; MAGNETORESISTANCE; OXIDE; NANOSTRUCTURES; TRANSISTORS; GATE;
D O I
10.1002/pssr.201510195
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In spite of large spin coherence length in graphene due to small spin-orbit coupling, the created potential barrier and antiferromagnetic coupling at graphene/transition metal (TM) contacts strongly reduce the spin transport behavior in graphene. Keeping these critical issues in mind in the present work, ferromagnetic (Co, Ni) nanosheets are grown on graphene surface to elucidate the nature of interaction at the graphene/ferromagnetic interface to improve the spin transistor characteristics. Temperature dependent magnetoconductance shows unusual behavior exhibiting giant enhancement in magnetoconductance with increasing temperature. A model based on spin-orbit coupling operated at the graphene/TM interface is proposed to explain this anomalous result. We believe that the device performance can be improved remarkably tuning the spin-orbit coupling at the interface of graphene based spin transistor. (C) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:544 / 549
页数:6
相关论文
共 50 条
  • [41] A bipolar spin-filtering effect in graphene zigzag nanoribbons with spin-orbit coupling
    Liu, Jun-Feng
    Chan, K. S.
    Wang, Jun
    NANOTECHNOLOGY, 2012, 23 (09)
  • [42] Spin-orbit proximity effect in graphene
    Avsar, A.
    Tan, J. Y.
    Taychatanapat, T.
    Balakrishnan, J.
    Koon, G. K. W.
    Yeo, Y.
    Lahiri, J.
    Carvalho, A.
    Rodin, A. S.
    O'Farrell, E. C. T.
    Eda, G.
    Castro Neto, A. H.
    Oezyilmaz, B.
    NATURE COMMUNICATIONS, 2014, 5
  • [43] Controlling the superconducting transition by spin-orbit coupling
    Banerjee, N.
    Ouassou, J. A.
    Zhu, Y.
    Stelmashenko, N. A.
    Linder, J.
    Blamire, M. G.
    PHYSICAL REVIEW B, 2018, 97 (18)
  • [44] THE RENNER EFFECT AND SPIN-ORBIT COUPLING
    POPLE, JA
    MOLECULAR PHYSICS, 1960, 3 (01) : 16 - 22
  • [45] RECOIL EFFECT AND SPIN-ORBIT COUPLING
    SATO, S
    PROGRESS OF THEORETICAL PHYSICS, 1955, 13 (04): : 457 - 457
  • [46] Coherent transport in SWCNTs with spin-orbit coupling
    Yanik, AA
    Srivastava, P
    Klimeck, G
    Datta, S
    2004 4TH IEEE CONFERENCE ON NANOTECHNOLOGY, 2004, : 89 - 91
  • [47] Spin-orbit coupling in transition metal dichalcogenide heterobilayer flat bands
    Rademaker, Louk
    PHYSICAL REVIEW B, 2022, 105 (19)
  • [48] Spin susceptibilities in armchair graphene nanoribbons with Rashba spin-orbit coupling
    Tan, Xiao-Dong
    Hu, Xiaohui
    Liao, Xiao-Ping
    Sun, Litao
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (32)
  • [49] Spin Relaxation near the Metal-Insulator Transition: Dominance of the Dresselhaus Spin-Orbit Coupling
    Intronati, Guido A.
    Tamborenea, Pablo I.
    Weinmann, Dietmar
    Jalabert, Rodolfo A.
    PHYSICAL REVIEW LETTERS, 2012, 108 (01)
  • [50] Thermal spin-orbit torque with Dresselhaus spin-orbit coupling
    Xue, Chun-Yi
    Wang, Ya-Ru
    Wang, Zheng-Chuan
    EUROPEAN PHYSICAL JOURNAL B, 2024, 97 (02):