The microfabrication and performance of a micro direct methanol fuel cell (mu DMFC) by silicon processes are presented in this paper. Using the silicon micromachining techniques, including thermal oxidation, optical lithography, wet etching, silicon anodization, physical vapor deposition, electroless plating, laser beams cauterization, and anodic bonding, we have successfully made single mu DMFC as small as 10mmx8mmx3mm. The main reason for the use of MEMS technology is the prospective potential for miniaturization and economical mass production of micro direct methanol fuel cells. The double side of silicon wafer deep wet etching was employed for the gas channels and fuel chamber preparation. The formation of porous silicon (PS) layers for electrode supports by electrochemical process is the key technologies to improve the MEMS-based mu DMFC. The method of catalyst deposition reported here differs from previous work in the specific method of electroless plating Pt-deposition and platinum with ruthenium (Pt-Ru) co-deposition on the porous silicon substrates. The power density of the single cell reached only 2.5mW/cm(2) lower than that single cell with traditional MEA (4.9mW/cm(2)) at the same operation conditions, but further improved performance of the mu DMFC with the electro-catalytic electrodes is expectant. Moreover, using the MEMS technology makes the batch fabrication of mu DMFC much easier and can reduce the usage of rare metals.