NiSe2 nanooctahedra as anodes for high-performance sodium-ion batteries

被引:39
|
作者
Fan, Siwei [1 ]
Li, Guangda [1 ]
Yang, Gai [2 ]
Guo, Xu [1 ]
Niu, Xinhuan [1 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Sch Mat Sci & Engn, Jinan 250353, Shandong, Peoples R China
[2] Qilu Univ Technol, Shandong Acad Sci, Energy Res Inst, Jinan 250353, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
FESE2; MICROSPHERES; ENERGY-STORAGE; LITHIUM; CHALLENGES; LI; NANOPARTICLES;
D O I
10.1039/c9nj02631b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Herein, NiSe2 nanooctahedra (NiSe2-NO) were fabricated by a two-step facile hydrothermal method, and the side length of the octahedra was about 400 nm. Moreover, the formation mechanism of the octahedra was examined by changing the selenization time and the species and concentration of alkaline hydroxide. NiSe2-NO shows excellent Na ion storage performance when used as an anode material for sodium-ion batteries (SIBs). It delivers the high reversible capacity of 462.1 mA h g(-1) after 500 cycles at the current density of 1 A g(-1), and even at the higher current density of 5 A g(-1), the capacity still could reach 191.1 mA h g(-1) after 1000 cycles. Furthermore, the initial coulombic efficiency was more than 80% at various current densities. These excellent electrochemistry properties can be attributed to the synergistic effects between the octahedra and the polyhedron particles on the surfaces of the octahedra.
引用
收藏
页码:12858 / 12864
页数:7
相关论文
共 50 条
  • [31] Sb-AlC0.75-C composite anodes for high-performance sodium-ion batteries
    Jung, Gyu Jin
    Lee, Yongho
    Mun, Yoo Seok
    Kim, Hyeongwoo
    Hur, Jaehyun
    Kim, Tae Young
    Suh, Kwang S.
    Kim, Ji Hyeon
    Lee, Daeho
    Choi, Wonchang
    Kim, Il Tae
    JOURNAL OF POWER SOURCES, 2017, 340 : 393 - 400
  • [32] β-NaMnO2: A High-Performance Cathode for Sodium-Ion Batteries
    Billaud, Juliette
    Clement, Raphaele J.
    Armstrong, A. Robert
    Canales-Vazquez, Jesus
    Rozier, Patrick
    Grey, Clare P.
    Bruce, Peter G.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (49) : 17243 - 17248
  • [33] Turbostratic carbon-localised FeS2 nanocrystals as anodes for high-performance sodium-ion batteries
    Liu, Yanyan
    Zhang, Long
    Liu, Di
    Hu, Wentao
    Yan, Xinlin
    Yu, Chuang
    Zeng, Hong
    Shen, Tongde
    NANOSCALE, 2019, 11 (33) : 15497 - 15507
  • [34] MnOOH nanorods as high-performance anodes for sodium ion batteries
    Shao, Lianyi
    Zhao, Qing
    Chen, Jun
    CHEMICAL COMMUNICATIONS, 2017, 53 (16) : 2435 - 2438
  • [35] High-Performance Sodium-Ion Batteries and Sodium-Ion Pseudocapacitors Based on MoS2/Graphene Composites
    Wang, Yun-Xiao
    Chou, Shu-Lei
    Wexler, David
    Liu, Hua-Kun
    Dou, Shi-Xue
    CHEMISTRY-A EUROPEAN JOURNAL, 2014, 20 (31) : 9607 - 9612
  • [36] Sulfur covalently bonded graphene with large capacity and high rate for high-performance sodium-ion batteries anodes
    Wang, Xiaolei
    Li, Ge
    Hassan, Fathy M.
    Li, Jingde
    Fan, Xingye
    Batmaz, Rasim
    Xiao, Xingcheng
    Chen, Zhongwei
    NANO ENERGY, 2015, 15 : 746 - 754
  • [37] High temperature induced abundant closed nanopores for hard carbon as high-performance sodium-ion batteries anodes
    Sun, Lei
    Li, Jian
    Wang, Lihua
    Li, Enxi
    Huang, Weiguo
    JOURNAL OF POWER SOURCES, 2024, 624
  • [38] Layered germanium phosphide-based anodes for high-performance lithium- and sodium-ion batteries
    Nam, Ki-Hun
    Jeon, Ki-Joon
    Park, Cheol-Min
    ENERGY STORAGE MATERIALS, 2019, 17 : 78 - 87
  • [39] Triconstituent co-assembly to hierarchically porous carbons as high-performance anodes for sodium-ion batteries
    Sun, Shijiao
    Yao, Jian
    Lin, Yue
    Zhao, Xiangyu
    Yang, Meng
    Wang, Huanlei
    Shen, Xiaodong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 771 : 140 - 146
  • [40] Antimony-based Intermetallic Alloy Anodes for High-Performance Sodium-Ion Batteries: Effect of Additives
    Hur, Jaehyun
    Kim, Il Tae
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2015, 36 (06) : 1625 - 1630