The asymptotic normality of the linear weighted estimator in nonparametric regression models

被引:3
|
作者
Shen, Aiting [1 ]
Ning, Mingming [1 ]
Wu, Caoqing [1 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei 230601, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Asymptotic normality; Linear weighted estimator; Nonparametric regression model; rho-mixing random variables; DEPENDENT RANDOM-VARIABLES; FIXED-DESIGN REGRESSION; COMPLETE CONVERGENCE; PARTIAL-SUMS; SEQUENCES; ARRAYS;
D O I
10.1080/03610926.2018.1429633
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the following nonparametric regression model:where x(ni) are known fixed design points from for some positive integer d > 1, g( center dot ) is an unknown regression function defined on A and epsilon(ni) are random errors. Under some suitable conditions, the asymptotic normality of the linear weighted estimator of g in the nonparametric regression model based on rho-mixing errors is established. The key techniques used in the paper are the Rosenthal type inequality and the Bernstein's bigblock and small-block procedure. The result obtained in the paper generalizes the corresponding ones for some dependent sequences.
引用
收藏
页码:1367 / 1376
页数:10
相关论文
共 50 条