Simulated Non-Parametric Estimation of Dynamic Models

被引:15
|
作者
Altissimo, Filippo [1 ]
Mele, Antonio [1 ]
机构
[1] London Sch Econ, London, England
来源
REVIEW OF ECONOMIC STUDIES | 2009年 / 76卷 / 02期
关键词
MAXIMUM-LIKELIHOOD-ESTIMATION; MINIMUM HELLINGER DISTANCE; GOODNESS-OF-FIT; DENSITY-FUNCTION; INFERENCE; MOMENTS; EQUATIONS;
D O I
10.1111/j.1467-937X.2008.00527.x
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper introduces a new class of parameter estimators for dynamic models, called simulated non-parametric estimators (SNEs). The SNE minimizes appropriate distances between non-parametric conditional (or joint) densities estimated from sample data and non-parametric conditional (or joint) densities estimated from data simulated out of the model of interest. Sample data and model-simulated data are smoothed with the same kernel, which considerably simplifies bandwidth selection for the purpose of implementing the estimator. Furthermore, the SNE displays the same asymptotic efficiency properties as the maximum-likelihood estimator as soon as the model is Markov in the observable variables. The methods introduced in this paper are fairly simple to implement, and possess finite sample properties that are well approximated by the asymptotic theory. We illustrate these features within typical estimation problems that arise in financial economics.
引用
收藏
页码:413 / 450
页数:38
相关论文
共 50 条
  • [21] NON-PARAMETRIC ESTIMATION OF A REGRESSION FUNCION
    SCHUSTER, EF
    ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (02): : 695 - +
  • [22] New ideas in non-parametric estimation
    Pistone, G
    DISORDERED AND COMPLEX SYSTEMS, 2001, 553 : 159 - 164
  • [23] Non-parametric estimation of the residual distribution
    Akritas, MG
    Van Keilegom, I
    SCANDINAVIAN JOURNAL OF STATISTICS, 2001, 28 (03) : 549 - 567
  • [24] Non-parametric estimation of morphological lopsidedness
    Giese, Nadine
    van der Hulst, Thijs
    Serra, Paolo
    Oosterloo, Tom
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 461 (02) : 1656 - 1673
  • [25] Non-parametric estimation of signals vectors
    Marchuk, L.A.
    Giniyatullin, N.F.
    Borisov, K.S.
    Izvestiya Vysshikh Uchebnykh Zavedenij. Radioelektronika, 2001, 44 (09): : 31 - 39
  • [26] Non-Parametric Estimation of Technical Progress
    Kevin J. Fox
    Journal of Productivity Analysis, 1998, 10 : 235 - 250
  • [27] NON-PARAMETRIC ESTIMATION OF CONDITIONAL QUANTILES
    SAMANTA, M
    STATISTICS & PROBABILITY LETTERS, 1989, 7 (05) : 407 - 412
  • [28] Density estimation with non-parametric methods
    Fadda, D
    Slezak, E
    Bijaoui, A
    ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 1998, 127 (02): : 335 - 352
  • [29] Non-parametric estimation of technical progress
    Fox, KJ
    JOURNAL OF PRODUCTIVITY ANALYSIS, 1998, 10 (03) : 235 - 250
  • [30] Detection threshold for non-parametric estimation
    Atto, Abdourrahmane M.
    Pastor, Dominique
    Mercier, Gregoire
    SIGNAL IMAGE AND VIDEO PROCESSING, 2008, 2 (03) : 207 - 223