On Convergence of the Class Membership Estimator in Fuzzy k-Nearest Neighbor Classifier

被引:12
|
作者
Banerjee, Imon [1 ]
Mullick, Sankha Subhra [2 ]
Das, Swagatam [2 ]
机构
[1] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA
[2] Indian Stat Inst, Elect & Commun Sci Unit, Kolkata 700108, India
关键词
Class membership estimator; error bound; error convergence; fuzzy sets; fuzzy k-nearest neighbor classifier (FkNN); ALGORITHMS; VALIDATION;
D O I
10.1109/TFUZZ.2018.2874017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The fuzzy k-nearest neighbor classifier (FkNN) improves upon the flexibility of the k-nearest neighbor classifier by considering each class as a fuzzy set and estimating the membership of an unlabeled data instance for each of the classes. However, the question of validating the quality of the class memberships estimated by FkNN for a regular multiclass classification problem still remains mostly unanswered. In this paper, we attempt to address this issue by first proposing a novel direction of evaluating a fuzzy classifier by highlighting the importance of focusing on the class memberships estimated by FkNN instead of its misclassification error. This leads us to finding novel theoretical upper bounds, respectively, on the bias and the mean squared error of the class memberships estimated by FkNN. Additionally the proposed upper bounds are shown to converge toward zero with increasing availability of the labeled data points, under some elementary assumptions on the class distribution and membership function. The major advantages of this analysis are its simplicity, capability of a direct extension for multiclass problems, parameter independence, and practical implication in explaining the behavior of FkNN in diverse situations (such as in presence of class imbalance). Furthermore, we provide a detailed simulation study on artificial and real data sets to empirically support our claims.
引用
收藏
页码:1226 / 1236
页数:11
相关论文
共 50 条
  • [31] Boosting the distance estimation -: Application to the K-Nearest Neighbor Classifier
    Amores, J
    Sebe, N
    Radeva, P
    PATTERN RECOGNITION LETTERS, 2006, 27 (03) : 201 - 209
  • [32] Fault Diagnosis Based on LTSA and K-Nearest Neighbor Classifier
    Jiang, Jingsheng
    Wang, Huaqing
    Ke, Yanliang
    Xiang, Wei
    Zhendong yu Chongji/Journal of Vibration and Shock, 2017, 36 (11): : 134 - 139
  • [33] A fall detection system using k-nearest neighbor classifier
    Liu, Chien-Liang
    Lee, Chia-Hoang
    Lin, Ping-Min
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (10) : 7174 - 7181
  • [34] Consistency of the k-Nearest Neighbor Classifier for Spatially Dependent Data
    Ahmad Younso
    Ziad Kanaya
    Nour Azhari
    Communications in Mathematics and Statistics, 2023, 11 : 503 - 518
  • [35] Classification of facial expressions using K-Nearest Neighbor Classifier
    Sohail, Abu Sayeed Md.
    Bhattacharya, Prabir
    COMPUTER VISION/COMPUTER GRAPHICS COLLABORATION TECHNIQUES, 2007, 4418 : 555 - +
  • [36] Finger Vein Identification using Fuzzy-based k-Nearest Centroid Neighbor Classifier
    Rosdi, Bakhtiar Affendi
    Jaafar, Haryati
    Ramli, Dzati Athiar
    2ND ISM INTERNATIONAL STATISTICAL CONFERENCE 2014 (ISM-II): EMPOWERING THE APPLICATIONS OF STATISTICAL AND MATHEMATICAL SCIENCES, 2015, 1643 : 649 - 654
  • [37] A Pruned Fuzzy k-Nearest Neighbor Classifier with Application to Electrocardiogram Based Cardiac Arrhytmia Recognition
    Afsar, Fayyaz A.
    Akram, M. U.
    Arif, M.
    Khurshid, J.
    INMIC: 2008 INTERNATIONAL MULTITOPIC CONFERENCE, 2008, : 143 - 148
  • [38] An Enhancement of Fuzzy K-Nearest Neighbor Classifier Using Multi-Local Power Means
    Kumbure, Mahinda Mailagaha
    Luukka, Pasi
    Collan, Mikael
    PROCEEDINGS OF THE 11TH CONFERENCE OF THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY (EUSFLAT 2019), 2019, 1 : 83 - 90
  • [39] An instance selection algorithm for fuzzy K-nearest neighbor
    Zhai, Junhai
    Qi, Jiaxing
    Zhang, Sufang
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (01) : 521 - 533