Triple attention network for video segmentation

被引:31
|
作者
Tian, Yan [1 ,2 ]
Zhang, Yujie [1 ]
Zhou, Di [3 ]
Cheng, Guohua [4 ]
Chen, Wei-Gang [1 ]
Wang, Ruili [1 ,5 ]
机构
[1] Zhejiang Gongshang Univ, Sch Comp & Informat Engn, Hangzhou 310018, Peoples R China
[2] Shining3D Tech Co Ltd, Shining3D Res, Hangzhou 310018, Peoples R China
[3] Zhejiang Univ Technol Co Ltd, Hangzhou 310051, Peoples R China
[4] Fudan Univ, Inst Sci & Technol Brain Inspired Intelligence, Minist Educ, Key Lab Computat Neurosci & Brain Inspired Intlli, Shanghai 200433, Peoples R China
[5] Massey Univ, Auckland 0632, New Zealand
基金
中国国家自然科学基金;
关键词
Video segmentation; Computer vision; Deep learning; Convolution neural network;
D O I
10.1016/j.neucom.2020.07.078
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Video segmentation automatically segments a target object throughout a video and has recently achieved good progress due to the development of deep convolutional neural networks (DCNNs). However, how to simultaneously capture long-range dependencies in multiple spaces remains an important issue in video segmentation. In this paper, we propose a novel triple attention network (TriANet) that simultaneously exploits temporal, spatial, and channel context knowledge by using the self-attention mechanism to enhance the discriminant ability of feature representations. We verify our method on the Shining3D dental, DAVIS16, and DAVIS17 datasets, and the results show our method to be competitive when compared with other state-of-the-art video segmentation methods. (C) 2020 Published by Elsevier B.V.
引用
收藏
页码:202 / 211
页数:10
相关论文
共 50 条
  • [21] Saliency-based dual-attention network for unsupervised video object segmentation
    Zhang, Guifang
    Wong, Hon-Cheng
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (04): : 4996 - 5010
  • [22] Symmetry Encoder-Decoder Network with Attention Mechanism for Fast Video Object Segmentation
    Guo, Mingyue
    Zhang, Dejun
    Sun, Jun
    Wu, Yiqi
    SYMMETRY-BASEL, 2019, 11 (08):
  • [23] Satellite Component Semantic Segmentation: Video Dataset and Real-Time Pyramid Attention and Decoupled Attention Network
    Shao, Yadong
    Wu, Aodi
    Li, Shengyang
    Shu, Leizheng
    Wan, Xue
    Shao, Yuanbin
    Huo, Junyan
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2023, 59 (06) : 7315 - 7333
  • [24] Co-attention Propagation Network for Zero-Shot Video Object Segmentation
    Pei, Gensheng
    Yao, Yazhou
    Shen, Fumin
    Huang, Dan
    Huang, Xingguo
    Shen, Heng-Tao
    arXiv, 2023,
  • [25] Saliency-based dual-attention network for unsupervised video object segmentation
    Guifang Zhang
    Hon-Cheng Wong
    The Journal of Supercomputing, 2024, 80 (4) : 4996 - 5010
  • [26] Efficient Long-Short Temporal Attention network for unsupervised Video Object Segmentation
    Li, Ping
    Zhang, Yu
    Yuan, Li
    Xiao, Huaxin
    Lin, Binbin
    Xu, Xianghua
    PATTERN RECOGNITION, 2024, 146
  • [27] TRIPLE ATTENTION FOR ROBUST VIDEO CROWD COUNTING
    Wu, Qiyao
    Zhang, Chongyang
    Kong, Xiyu
    Zhao, Muming
    Chen, Yanjun
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 1966 - 1970
  • [28] Capsule network for video segmentation
    Buyko, Aleksandr Y.
    Vinogradov, Andrey N.
    Tishchenko, Igor P.
    CEUR Workshop Proceedings, 2018, 2236 : 17 - 23
  • [29] Dynamic Video Segmentation Network
    Xu, Yu-Syuan
    Fu, Tsu-Jui
    Yang, Hsuan-Kung
    Lee, Chun-Yi
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 6556 - 6565
  • [30] Visual Attention Guided Video Object Segmentation
    Liang, Hao
    Tan, Yihua
    PROCEEDINGS OF THE 2019 14TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2019), 2019, : 345 - 349