Triple attention network for video segmentation

被引:31
|
作者
Tian, Yan [1 ,2 ]
Zhang, Yujie [1 ]
Zhou, Di [3 ]
Cheng, Guohua [4 ]
Chen, Wei-Gang [1 ]
Wang, Ruili [1 ,5 ]
机构
[1] Zhejiang Gongshang Univ, Sch Comp & Informat Engn, Hangzhou 310018, Peoples R China
[2] Shining3D Tech Co Ltd, Shining3D Res, Hangzhou 310018, Peoples R China
[3] Zhejiang Univ Technol Co Ltd, Hangzhou 310051, Peoples R China
[4] Fudan Univ, Inst Sci & Technol Brain Inspired Intelligence, Minist Educ, Key Lab Computat Neurosci & Brain Inspired Intlli, Shanghai 200433, Peoples R China
[5] Massey Univ, Auckland 0632, New Zealand
基金
中国国家自然科学基金;
关键词
Video segmentation; Computer vision; Deep learning; Convolution neural network;
D O I
10.1016/j.neucom.2020.07.078
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Video segmentation automatically segments a target object throughout a video and has recently achieved good progress due to the development of deep convolutional neural networks (DCNNs). However, how to simultaneously capture long-range dependencies in multiple spaces remains an important issue in video segmentation. In this paper, we propose a novel triple attention network (TriANet) that simultaneously exploits temporal, spatial, and channel context knowledge by using the self-attention mechanism to enhance the discriminant ability of feature representations. We verify our method on the Shining3D dental, DAVIS16, and DAVIS17 datasets, and the results show our method to be competitive when compared with other state-of-the-art video segmentation methods. (C) 2020 Published by Elsevier B.V.
引用
收藏
页码:202 / 211
页数:10
相关论文
共 50 条
  • [1] TANet: Triple Attention Network for medical image segmentation
    Wei, Xin
    Ye, Fanghua
    Wan, Huan
    Xu, Jianfeng
    Min, Weidong
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 82
  • [2] Attention-Guided Network for Semantic Video Segmentation
    Li, Jiangyun
    Zhao, Yikai
    Fu, Jun
    Wu, Jiajia
    Liu, Jing
    IEEE ACCESS, 2019, 7 : 140680 - 140689
  • [3] PTANet: Triple Attention Network for point cloud semantic segmentation
    Cheng, Haozhe
    Lu, Jian
    Luo, Maoxin
    Liu, Wei
    Zhang, Kaibing
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 102
  • [4] Multi-Attention Network for Unsupervised Video Object Segmentation
    Zhang, Guifang
    Wong, Hon-Cheng
    Lo, Sio-Long
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 71 - 75
  • [5] FUSION TARGET ATTENTION MASK GENERATION NETWORK FOR VIDEO SEGMENTATION
    Li, Yunyi
    Chen, Fangping
    Yang, Fan
    Li, Yuan
    Jia, Huizhu
    Xie, Xiaodong
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2276 - 2280
  • [6] MAIN: Multi-Attention Instance Network for video segmentation
    Alcazar, Juan Leon
    Bravo, Maria A.
    Jeanneret, Guillaume
    Thabet, Ali K.
    Brox, Thomas
    Arbelaez, Pablo
    Ghanem, Bernard
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2021, 210
  • [7] Spatio-temporal Attention Network for Video Instance Segmentation
    Liu, Xiaoyu
    Ren, Haibing
    Ye, Tingmeng
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 725 - 727
  • [8] RANet: Ranking Attention Network for Fast Video Object Segmentation
    Wang, Ziqin
    Xu, Jun
    Liu, Li
    Zhu, Fan
    Shao, Ling
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 3977 - 3986
  • [9] TA-Net: Triple attention network for medical image segmentation
    Li, Yang
    Yang, Jun
    Ni, Jiajia
    Elazab, Ahmed
    Wu, Jianhuang
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 137
  • [10] COMatchNet: Co-Attention Matching Network for Video Object Segmentation
    Huang, Lufei
    Sun, Fengming
    Yuan, Xia
    PATTERN RECOGNITION, ACPR 2021, PT I, 2022, 13188 : 271 - 284