Mechanical Reinforcement of Continuous Flow Spun Polyelectrolyte Complex Fibers

被引:18
|
作者
Granero, Alberto J. [1 ]
Razal, Joselito M. [1 ]
Wallace, Gordon G. [1 ]
Panhuis, Marc In Het [1 ]
机构
[1] Univ Wollongong, ARC Ctr Excellence Electromat Sci, Intelligent Polymer Res Inst, Sch Chem, Wollongong, NSW 2522, Australia
基金
澳大利亚研究理事会;
关键词
chitosan; conductivity; fiber spinning; gellan gum; mechanical reinforcement; polyelectrolyte complexation; CARBON-NANOTUBE COMPOSITES; GELLAN GUM; SOLUTION INTERFACES; CHITOSAN; TRANSPARENT; SCAFFOLD;
D O I
10.1002/mabi.200800257
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A simple continuous flow wet-spinning method to achieve mechanical reinforcement of the two oppositely charged biopolymers chitosan and gellan gum is described. The mechanical properties of these biopolymers are influenced by the order of addition. Using a facile method for mechanical reinforcement of gellan gum/chitosan fibers resulted in increases in Young's modulus, tensile strength, and toughness. Spinning gellan gum into chitosan resulted in the strongest fibers. We show that our fibers can provide a mechanical alternative for bio-fibers without the need of cross-linking. It is demonstrated that the fibers become ionically conducting in the presence of water vapor.
引用
收藏
页码:354 / 360
页数:7
相关论文
共 50 条
  • [31] Mechanical Reinforcement of Wool Fiber through Polyelectrolyte Complexation with Chitosan and Gellan Gum
    Amin, Khairul Anuar Mat
    Panhuis, Marc in het
    FIBERS, 2013, 1 (03): : 47 - 58
  • [32] Mechanical reinforcement of gellan gum polyelectrolyte hydrogels by cationic polyurethane soft nanoparticles
    Sahraro, Maryam
    Barikani, Mehdi
    Daemi, Hamed
    CARBOHYDRATE POLYMERS, 2018, 187 : 102 - 109
  • [33] Enhancement of the Mechanical Properties of Hydrogels with Continuous Fibrous Reinforcement
    Beckett, Laura E.
    Lewis, Jackson T.
    Tonge, Theresa K.
    Korley, LaShanda T. J.
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2020, 6 (10): : 5453 - 5473
  • [34] Mechanical and Morphological Evaluation of the Reinforcement of Polycaprolactone With Different Cellulose Fibers
    Aguiar, Vinicius O.
    Marques, Maria de Fatima, V
    MACROMOLECULAR SYMPOSIA, 2018, 381 (01)
  • [35] Mechanical Reinforcement of Polymeric Fibers through Peptide Nanotube Incorporation
    Rubin, Daniel J.
    Nia, Hadi T.
    Desire, Thierry
    Nguyen, Peter Q.
    Gevelber, Michael
    Ortiz, Christine
    Joshi, Neel S.
    BIOMACROMOLECULES, 2013, 14 (10) : 3370 - 3375
  • [36] Mechanical characterizations of composite material with short Alfa fibers reinforcement
    Mechakra, H.
    Nour, A.
    Lecheb, S.
    Chellil, A.
    COMPOSITE STRUCTURES, 2015, 124 : 152 - 162
  • [37] Mechanical, thermal and ablative properties of interply continuous/spun hybrid carbon composites
    Kang, TJ
    Shin, SJ
    Jung, K
    Park, JK
    CARBON, 2006, 44 (05) : 833 - 839
  • [38] Structural evolution and mechanical properties of iPP melt spun fibers subjected to thermal treatment
    Osta, A. R.
    Picu, R. C.
    Isele, O.
    Hamm, R.
    JOURNAL OF POLYMER RESEARCH, 2016, 23 (03) : 1 - 13
  • [39] Mechanical Behavior of Shape Memory Fibers Spun from Nanoclay-Tethered Polyurethanes
    Hong, Seok Jin
    Yu, Woong-Ryeol
    Youk, Ji Ho
    MACROMOLECULAR RESEARCH, 2008, 16 (07) : 644 - 650
  • [40] Structural evolution and mechanical properties of iPP melt spun fibers subjected to thermal treatment
    A. R. Osta
    R. C. Picu
    O. Isele
    R. Hamm
    Journal of Polymer Research, 2016, 23