Efficient Greenhouse Temperature Control with Data-Driven Robust Model Predictive

被引:0
|
作者
Chen, Wei-Han [1 ]
You, Fengqi [1 ]
机构
[1] Cornell Univ, Smith Sch Chem & Biomol Engn, Ithaca, NY 14853 USA
关键词
DECISION-MAKING; BIG DATA; OPTIMIZATION; UNCERTAINTY; CLIMATE; ENERGY; FRAMEWORK; ALGORITHM;
D O I
10.23919/acc45564.2020.9147701
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Appropriate greenhouse temperature should be maintained to ensure crop production while minimizing energy consumption. Even though weather forecasts could provide a certain amount of information to improve control performance, it is not perfect and forecast error may cause the temperature to deviate from the acceptable range. To inherent uncertainty in weather that affects control accuracy, this paper develops a data-driven robust model predictive control (DDRMPC) approach for greenhouse temperature control. The dynamic model is obtained from thermal resistance-capacitance modeling derived by the Building Resistance-Capacitance Modeling (BRCM) toolbox. Uncertainty sets of ambient temperature and solar radiation are captured by support vector clustering technique, and they are further tuned for better quality by training-calibration procedure. A case study shows that the DDRMPC has better control performance compared to rule-based control, certainty equivalent MPC, and robust MPC. DDRMPC approach ends up with 12% less total energy consumption than rule-based control strategy.
引用
收藏
页码:1986 / 1991
页数:6
相关论文
共 50 条
  • [41] Data-driven Model Predictive Control with Matrix Forgetting Factor
    Calderon, Horacio M.
    Schulz, Erik
    Oehlschlaegel, Thimo
    Werner, Herbert
    IFAC PAPERSONLINE, 2023, 56 (02): : 10077 - 10082
  • [42] Synthesis of model predictive control based on data-driven learning
    Yuanqiang Zhou
    Dewei Li
    Yugeng Xi
    Zhongxue Gan
    Science China Information Sciences, 2020, 63
  • [43] Data-driven model predictive control for precision irrigation management
    Bwambale, Erion
    Abagale, Felix K.
    Anornu, Geophrey K.
    SMART AGRICULTURAL TECHNOLOGY, 2023, 3
  • [44] A data-driven approach for model predictive control performance monitoring
    Zhang, Guang-Ming
    Li, Ning
    Li, Shao-Yuan
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2011, 45 (08): : 1113 - 1118
  • [45] Data-Driven Optimization Framework for Nonlinear Model Predictive Control
    Zhang, Shiliang
    Cao, Hui
    Zhang, Yanbin
    Jia, Lixin
    Ye, Zonglin
    Hei, Xiali
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [46] Data-driven model predictive control for ships with Gaussian process
    Xu, Peilong
    Qin, Hongde
    Ma, Jingran
    Deng, Zhongchao
    Xue, Yifan
    OCEAN ENGINEERING, 2023, 268
  • [47] Data-Driven Incremental Model Predictive Control for Robot Manipulators
    Wang, Yongchao
    Zhou, Yuhang
    Liu, Fangzhou
    Leibold, Marion
    Buss, Martin
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2024,
  • [48] Data-driven Model Predictive Control for Drop Foot Correction
    Singh, Mayank
    Sharma, Nitin
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 2615 - 2620
  • [49] Synthesis of model predictive control based on data-driven learning
    Yuanqiang ZHOU
    Dewei LI
    Yugeng XI
    Zhongxue GAN
    ScienceChina(InformationSciences), 2020, 63 (08) : 251 - 253
  • [50] Data-driven Switched Affine Modeling for Model Predictive Control
    Smarra, Francesco
    Jain, Achin
    Mangharam, Rahul
    D'Innocenzo, Alessandro
    IFAC PAPERSONLINE, 2018, 51 (16): : 199 - 204