MOSS: multi-omic integration with sparse value decomposition

被引:1
|
作者
Gonzalez-Reymundez, Agustin [1 ]
Grueneberg, Alexander [1 ]
Lu, Guanqi [1 ]
Alves, Filipe Couto [1 ]
Rincon, Gonzalo [2 ]
Vazquez, Ana, I [1 ]
机构
[1] Michigan State Univ, Dept Epidemiol & Biostat, E Lansing, MI 48824 USA
[2] Genus PLC Inc, Genome Sci R&D, De Forest, MI USA
关键词
PRINCIPAL COMPONENT ANALYSIS; BREAST; PREDICTION; JOINT;
D O I
10.1093/bioinformatics/btac179
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This article presents multi-omic integration with sparse value decomposition (MOSS), a free and open-source R package for integration and feature selection in multiple large omics datasets. This package is computationally efficient and offers biological insight through capabilities, such as cluster analysis and identification of informative omic features.
引用
收藏
页码:2956 / 2958
页数:3
相关论文
共 50 条
  • [31] Integration of multi-omic data identifies psoriasis endotypes correlating with clinical and immunological phenotypes
    Cameron, M.
    Golden, J.
    Richardson, B.
    Damiani, G.
    Ali, M.
    Young, A.
    Nichols, C.
    Ward, N.
    McCormick, T.
    Cooper, K.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2019, 139 (09) : S230 - S230
  • [32] Multi-Omic Data Integration Suggests Putative Microbial Drivers of Aetiopathogenesis in Mycosis Fungoides
    Licht, Philipp
    Mailaender, Volker
    CANCERS, 2024, 16 (23)
  • [33] Multi-omic integration by machine learning (MIMaL) (vol 38, pg 4908, 2022)
    Dickinson, Quinn
    Aufschnaiter, Andreas
    Ott, Martin
    Meyer, Jesse G.
    BIOINFORMATICS, 2023, 39 (04)
  • [34] GDC: Integration of Multi-Omic and Phenotypic Resources to Unravel the Genetic Pathogenesis of Hearing Loss
    Cheng, Hui
    Wang, Xuegang
    Zhong, Mingjun
    Geng, Jia
    Li, Wenjian
    Pei, Kanglu
    Wang, Jing
    Wang, Lanchen
    Lu, Yu
    Cheng, Jing
    Bu, Fengxiao
    Yuan, Huijun
    ADVANCED SCIENCE, 2025,
  • [35] Multi-omic integration via similarity network fusion to detect molecular subtypes of ageing
    Yang, Mu
    Matan-Lithwick, Stuart
    Wang, Yanling
    De Jager, Philip L.
    Bennett, David A.
    Felsky, Daniel
    BRAIN COMMUNICATIONS, 2023, 5 (02)
  • [36] A novel multivariate curve resolution based strategy for multi-omic integration of toxicological data
    Menendez-Pedriza, Albert
    Navarro-Martin, Laia
    Jaumot, Joaquim
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2023, 242
  • [37] PyLiger: scalable single-cell multi-omic data integration in Python']Python
    Lu, Lu
    Welch, Joshua D.
    BIOINFORMATICS, 2022, 38 (10) : 2946 - 2948
  • [38] inMTSCCA: An Integrated Multi-task Sparse Canonical Correlation Analysis for Multi-omic Brain Imaging Genetics
    Du, Lei
    Zhang, Jin
    Zhao, Ying
    Shang, Muheng
    Guo, Lei
    Han, Junwei
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2023, 21 (02) : 396 - 413
  • [39] Multi-omic profiling in pulmonary arterial hypertension
    Otero-Nunez, Pablo
    Rhodes, Christopher
    Wharton, John
    Swietlik, Emilia
    Kariotis, Sokratis
    Harbaum, Lars
    Dunning, Mark
    Elinoff, Jason
    Errington, Niamh
    Thomson, Roger
    Iremonger, James
    Coghlan, Gerry
    Corris, Paul
    Howard, Luke
    Kiely, David
    Church, Colin
    Pepke-Zaba, Joanna
    Toshner, Mark
    Wort, Stephen
    Desai, Ankit
    Humbert, Marc
    Nichols, William
    Southgate, Laura
    Tregouet, David-Alexandre
    Trembath, Richard
    Prokopenko, Inga
    Graf, Stefan
    Morrell, Nicholas
    Wang, Dennis
    Lawrie, Allan
    Wilkins, Martin
    EUROPEAN RESPIRATORY JOURNAL, 2020, 56
  • [40] Characterizing Multi-omic Data in Systems Biology
    Mason, Christopher E.
    Porter, Sandra G.
    Smith, Todd M.
    SYSTEMS ANALYSIS OF HUMAN MULTIGENE DISORDERS, 2014, 799 : 15 - 38