A Quantitative Variant of Voronovskaja's Theorem

被引:5
|
作者
Gonska, Heiner [1 ]
Tachev, Gancho [2 ]
机构
[1] Univ Duisburg Essen, Dept Math, D-47048 Duisburg, Germany
[2] Univ Architecture Civil Engn & Geodesy, Dept Math, BG-1046 Sofia, Bulgaria
关键词
Bernstein polynomials; quantitative Voronovskaja theorem; K-functional; least concave majorant; modulus of continuity; Ditzian-Totik modulus;
D O I
10.1007/s00025-008-0339-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A general quantitative Voronovskaja theorem for Bernstein operators is given which bridges the gap between such estimates in terms of the least concave majorant of the. first order modulus of continuity and the. first order Ditzian-Totik modulus with classical weight phi(x) = root x(1 - x).
引用
收藏
页码:287 / 294
页数:8
相关论文
共 50 条
  • [21] Generalized Voronovskaja's Theorem and Approximation by Butzer's Combinations of Complex Bernstein Polynomials
    Gal, Sorin G.
    RESULTS IN MATHEMATICS, 2009, 53 (3-4) : 257 - 268
  • [22] The Voronovskaja type theorem for an extension of Kantorovich operators
    Miclaus, Dan
    Pop, Ovidiu T.
    Barbosu, Dan
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2010, 37 (04): : 29 - 36
  • [23] A variant of Browder's theorem
    Behera, A
    Panda, GK
    ACTA MATHEMATICA HUNGARICA, 1998, 79 (1-2) : 139 - 147
  • [24] A VARIANT OF BAER'S THEOREM
    Zusmanovich, Pasha
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2024, 54 (03) : 929 - 932
  • [25] A Variant of Uzawa's Theorem
    Schlicht, Ekkehart
    ECONOMICS BULLETIN, 2006, 5
  • [26] Voronovskaja Theorem for Simultaneous Approximation by Bernstein Operators on a Simplex
    Paltanea, Radu
    Stan, Gabriel
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2015, 12 (03) : 889 - 900
  • [27] A Variant of Browder's Theorem
    A. Behera
    G. K. Panda
    Acta Mathematica Hungarica, 1998, 79 : 139 - 147
  • [28] A variant of Wang's theorem
    Watanabe, Kei-ichi
    Yoshida, Ken-ichi
    JOURNAL OF ALGEBRA, 2012, 369 : 129 - 145
  • [29] Remark on Voronovskaja theorem for q-Bernstein operators
    Finta, Zoltan
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2011, 56 (02): : 335 - 339
  • [30] VORONOVSKAJA-TYPE THEOREM FOR CERTAIN GBS OPERATORS
    Pop, Ovidiu T.
    GLASNIK MATEMATICKI, 2008, 43 (01) : 179 - 194