A Quantitative Variant of Voronovskaja's Theorem

被引:5
|
作者
Gonska, Heiner [1 ]
Tachev, Gancho [2 ]
机构
[1] Univ Duisburg Essen, Dept Math, D-47048 Duisburg, Germany
[2] Univ Architecture Civil Engn & Geodesy, Dept Math, BG-1046 Sofia, Bulgaria
关键词
Bernstein polynomials; quantitative Voronovskaja theorem; K-functional; least concave majorant; modulus of continuity; Ditzian-Totik modulus;
D O I
10.1007/s00025-008-0339-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A general quantitative Voronovskaja theorem for Bernstein operators is given which bridges the gap between such estimates in terms of the least concave majorant of the. first order modulus of continuity and the. first order Ditzian-Totik modulus with classical weight phi(x) = root x(1 - x).
引用
收藏
页码:287 / 294
页数:8
相关论文
共 50 条