Softened potentials and the multipolar expansion

被引:0
|
作者
Wachlin, F. C.
Carpintero, D. D.
机构
[1] Natl Univ La Plata, Fac Ciencias Astron & Geofis, RA-1900 La Plata, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Inst Astrofis La Plata, RA-1900 La Plata, Argentina
关键词
galaxy : kinematics and dynamics; methods : N-body simulations; methods : numerical;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
When the gravitational potential is developed in a multipolar series, each multipole is well defined and corresponds to a finite sum of terms in the series. In order to use the gravitational potential in numerical simulations, however, a multipolar expansion is usually applied to a softened Newtonian potential. It turns out that the commonly used multipolar expansion in this case no longer isolates each multipole as in the former case; instead, each multipole is spilled over an infinity of terms. In this paper we show how to recover the complete multipoles. Fortunately, the overall effect of using incomplete multipoles instead of complete ones turns out to be negligible in the cases of interest, for example, in its use in tree codes.
引用
收藏
页码:251 / 259
页数:9
相关论文
共 50 条
  • [41] ANHARMONIC MOTION AND MULTIPOLAR EXPANSION OF THE ELECTRON-DENSITY IN NANO3
    GONSCHOREK, W
    SCHMAHL, WW
    WEITZEL, H
    MIEHE, G
    FUESS, H
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1995, 210 (11): : 843 - 849
  • [42] Relation between occupation in the first coordination shells and Widom line in core-softened potentials
    Salcedo, Evy
    Barraz, Ney M., Jr.
    Barbosa, Marcia C.
    JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (16):
  • [43] Multiple liquid-liquid critical points and density anomaly in core-softened potentials
    Barbosa, Marco Aurelio A.
    Salcedo, Evy
    Barbosa, Marcia C.
    PHYSICAL REVIEW E, 2013, 87 (03):
  • [44] New Measurement System of Magnetic Near-Field With Multipolar Expansion Approach
    Breard, A.
    Tavernier, F.
    Li, Z.
    Kraehenbuehl, L.
    IEEE TRANSACTIONS ON MAGNETICS, 2016, 52 (03)
  • [45] A hybrid multipolar-expansion-moment-method approach for electromagnetic scattering problems
    Rodriguez, JL
    Obelleiro, F
    Pino, AG
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1996, 11 (06) : 304 - 308
  • [46] NEW SEPARABLE EXPANSION FOR LOCAL POTENTIALS
    ADHIKARI, SK
    PHYSICAL REVIEW C, 1974, 10 (05): : 1623 - 1628
  • [47] Rigid filler particles in a rubber matrix: effective force constants by multipolar expansion
    Raos, G
    Allegra, G
    Assecondi, L
    Croci, C
    COMPUTATIONAL AND THEORETICAL POLYMER SCIENCE, 2000, 10 (1-2): : 149 - 157
  • [48] Potentials with Convergent Schwinger–DeWitt Expansion
    V. A. Slobodenyuk
    International Journal of Theoretical Physics, 1998, 37 : 1753 - 1771
  • [49] MOTION AND EXPANSION OF WAVEPACKETS IN PERIODIC POTENTIALS
    WEISSMAN, Y
    SUSSMANN, JA
    JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (11) : 1543 - 1545
  • [50] SOFTENED WATER
    SHEWMAN, AW
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1953, 153 (07): : 694 - 694