Global existence of classical solutions to two-dimensional Navier-Stokes equations with Cauchy data containing vacuum

被引:9
|
作者
Luo, Zhen [1 ,2 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
[2] Chinese Univ Hong Kong, Inst Math Sci, Shatin, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
viscous compressible Navier-Stokes; Cauchy problem; global solution; classical solution; BLOW-UP; COMPRESSIBLE FLOW; SMOOTH SOLUTIONS; WEAK SOLUTIONS; INITIAL DATA; FLUIDS;
D O I
10.1002/mma.2896
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the Cauchy problem to the two-dimensional isentropic compressible Navier-Stokes equations with smooth initial data containing vacuum is investigated. If the initial data are of small energy but possibly large oscillations, we obtain the global well-posedness of classical solutions in the case of initially nonvacuum far fields. In particular, the smallness of the energy only depends on the H-beta(0<beta <= 1) norm of the initial velocity, where beta can be arbitrary close to 0. In the case of compactly supported initial density, a blow-up example is given. Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:1333 / 1352
页数:20
相关论文
共 50 条
  • [21] Global classical solution to two-dimensional compressible Navier-Stokes equations with large data in R2
    Jiu, Quansen
    Wang, Yi
    Xin, Zhouping
    PHYSICA D-NONLINEAR PHENOMENA, 2018, 376 : 180 - 194
  • [22] Global symmetric classical solutions of the full compressible Navier-Stokes equations with vacuum and large initial data
    Wen, Huanyao
    Zhu, Changjiang
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 102 (03): : 498 - 545
  • [23] A global Stokes method of approximated particular solutions for unsteady two-dimensional Navier-Stokes system of equations
    Granados, J. M.
    Bustamante, C. A.
    Power, H.
    Florez, W. F.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (08) : 1515 - 1541
  • [24] Global classical solutions to the 2D compressible Navier-Stokes equations with vacuum
    Ding, Shijin
    Huang, Bingyuan
    Liu, Xiaoling
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (08)
  • [25] On the two-dimensional hydrostatic Navier-Stokes equations
    Bresch, D
    Kazhikhov, A
    Lemoine, J
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 36 (03) : 796 - 814
  • [26] Non-existence of Classical Solutions with Finite Energy to the Cauchy Problem of the Compressible Navier-Stokes Equations
    Li, Hai-Liang
    Wang, Yuexun
    Xin, Zhouping
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 232 (02) : 557 - 590
  • [27] GLOBAL EXISTENCE OF SOLUTIONS FOR THE COUPLED VLASOV AND NAVIER-STOKES EQUATIONS
    Boudin, Laurent
    Desvillettes, Laurent
    Grandmont, Celine
    Moussa, Ayman
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2009, 22 (11-12) : 1247 - 1271
  • [28] GLOBAL EXISTENCE OF SOLUTIONS FOR ISENTROPIC COMPRESSIBLE NAVIER-STOKES EQUATIONS
    LIONS, PL
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 316 (12): : 1335 - 1340
  • [29] Analyticity of solutions for randomly forced two-dimensional Navier-Stokes equations
    Shirikyan, A
    RUSSIAN MATHEMATICAL SURVEYS, 2002, 57 (04) : 785 - 799
  • [30] Some new exact solutions for the two-dimensional Navier-Stokes equations
    Wu, Chiping
    Ji, Zhongzhen
    Zhang, Yongxing
    Hao, Hartzhong
    Jin, Xuan
    PHYSICS LETTERS A, 2007, 371 (5-6) : 438 - 452