A BOUNDARY SCHWARZ LEMMA FOR PLURIHARMONIC MAPPINGS FROM THE UNIT POLYDISK TO THE UNIT BALL

被引:0
|
作者
Li, Ling [1 ]
Li, Hongyi [1 ]
Zhao, Di [1 ]
机构
[1] Beihang Univ, Sch Math & Syst Sci, LMIB, Beijing 100191, Peoples R China
关键词
Boundary Schwarz lemma; pluriharmonic mapping; unit polydisk; unit ball; C-N; DOMAIN;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we present a Schwarz lemma at the boundary for pluriharmonic mappings from the unit polydisk to the unit ball, which generalizes classical Schwarz lemma for bounded harmonic functions to higher dimensions. It is proved that if the pluriharmonic mapping f is an element of P(D-n, B-N) is C1+alpha at z(0) subset of E-r subset of partial derivative D-n with f(0) = 0 and f(z(0)) = w(0) is an element of partial derivative B-N for any n, N >= 1, then there exist a nonnegative vector lambda(f) = (lambda(1), 0, ... , lambda(r), 0, ... , 0)(T) is an element of R-2n satisfying lambda(i) >= for -1/2(2n-1) for 1 <= i <= r such that (Df(z(0)'))(T) w(0)' = diag(lambda(f))z(0)', where z(0)' and w(0)' are real versions of z(0) and w(0), respectively.
引用
收藏
页码:926 / 934
页数:9
相关论文
共 50 条
  • [41] A Schwarz lemma for open unit balls
    Vigue, JP
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1997, 40 (01): : 117 - 128
  • [42] Complex Symmetric Toeplitz Operators on the Unit Polydisk and the Unit Ball
    Jiang, Cao
    Dong, Xingtang
    Zhou, Zehua
    ACTA MATHEMATICA SCIENTIA, 2020, 40 (01) : 35 - 44
  • [43] Complex Symmetric Toeplitz Operators on the Unit Polydisk and the Unit Ball
    Cao Jiang
    Xingtang Dong
    Zehua Zhou
    Acta Mathematica Scientia, 2020, 40 : 35 - 44
  • [44] COMPLEX SYMMETRIC TOEPLITZ OPERATORS ON THE UNIT POLYDISK AND THE UNIT BALL
    蒋操
    董兴堂
    周泽华
    Acta Mathematica Scientia, 2020, 40 (01) : 35 - 44
  • [45] HOLOMORPHIC MAPPINGS FROM BALL AND POLYDISK
    ALEXANDER, H
    MATHEMATISCHE ANNALEN, 1974, 209 (03) : 249 - 256
  • [46] Toeplitz operators with pluriharmonic symbol on the unit ball
    Eschmeier, Joerg
    Langendoerfer, Sebastian
    BULLETIN DES SCIENCES MATHEMATIQUES, 2019, 151 : 34 - 50
  • [47] Toeplitz Corona Theorems for the Polydisk and the Unit Ball
    Trent, Tavan T.
    Wick, Brett D.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2009, 3 (03) : 729 - 738
  • [48] Toeplitz Corona Theorems for the Polydisk and the Unit Ball
    Tavan T. Trent
    Brett D. Wick
    Complex Analysis and Operator Theory, 2009, 3
  • [49] The Schwarz Type Inequality for Harmonic Mappings of the Unit Disc with Boundary Normalization
    Partyka, Dariusz
    Zajac, Jozef
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2015, 9 (01) : 213 - 228
  • [50] The Schwarz Type Inequality for Harmonic Mappings of the Unit Disc with Boundary Normalization
    Dariusz Partyka
    Józef Zaja̧c
    Complex Analysis and Operator Theory, 2015, 9 : 213 - 228