Surface reconstruction based on radial basis functions network

被引:0
|
作者
Liu, Han-bo [1 ]
Wang, Xin
Wu, Xiao-jun
Qiang, Wen-yi
机构
[1] Harbin Inst Technol, Shenzhen Grad Sch, Dept Control & Mechatron Engn, Shenzhen, Peoples R China
[2] Harbin Inst Technol, Shenzhen Grad Sch, Dept Mech Engn & Automat, Shenzhen, Peoples R China
[3] Harbin Inst Technol, Dept Control Sci & Engn, Harbin 150006, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new method for arbitrary 3d-object reconstruction in unknown environment is proposed in this paper. The implicit surface is reconstructed based on radial basis functions network from range scattered data. For the property of locality of radial basis function, the method is fast and robust with respect to large data. Furthermore, an adapted K-Means algorithm is used to reduce RBF centers for reconstruction. Experiment results show that the presented approach is helpful in speed improvement and is a good solution for large data reconstruction.
引用
收藏
页码:1242 / 1247
页数:6
相关论文
共 50 条
  • [11] A fast method for implicit surface reconstruction based on radial basis functions network from 3D scattered points
    Liu, Hanbo
    Wang, Xin
    Qiang, Wenyi
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2007, 17 (06) : 459 - 465
  • [12] Adaptive cross-approximation for surface reconstruction using radial basis functions
    Grzhibovskis, Richards
    Bambach, Markus
    Rjasanow, Sergej
    Hirt, Gerhard
    JOURNAL OF ENGINEERING MATHEMATICS, 2008, 62 (02) : 149 - 160
  • [13] A geometrical approach for surface reconstruction by means of radial basis functions with compact support
    Sanchez Torres, German
    William Branch, John
    REVISTA FACULTAD DE INGENIERIA-UNIVERSIDAD DE ANTIOQUIA, 2009, (48): : 119 - 129
  • [14] Adaptive cross-approximation for surface reconstruction using radial basis functions
    Richards Grzhibovskis
    Markus Bambach
    Sergej Rjasanow
    Gerhard Hirt
    Journal of Engineering Mathematics, 2008, 62 : 149 - 160
  • [16] Tomographic reconstruction using radial basis functions
    Miranda, ED
    Valdos, LRB
    Gallanzi, MF
    4TH IBEROAMERICAN MEETING ON OPTICS AND 7TH LATIN AMERICAN MEETING ON OPTICS, LASERS, AND THEIR APPLICATIONS, 2001, 4419 : 648 - 651
  • [17] A NEW KIND OF NEURAL NETWORK BASED ON RADIAL BASIS FUNCTIONS
    SERVIN, M
    CUEVAS, FJ
    REVISTA MEXICANA DE FISICA, 1993, 39 (02) : 235 - 249
  • [18] Fast surface reconstruction and hole filling using positive definite radial basis functions
    G. Casciola
    D. Lazzaro
    L. B. Montefusco
    S. Morigi
    Numerical Algorithms, 2005, 39 : 289 - 305
  • [19] Fast surface reconstruction and hole filling using positive definite radial basis functions
    Casciola, G
    Lazzaro, D
    Montefusco, L
    Morigi, S
    NUMERICAL ALGORITHMS, 2005, 39 (1-3) : 289 - 305
  • [20] Reconstruction of electroencephalographic data using radial basis functions
    Jaeger, Janin
    Klein, Alexander
    Buhmann, Martin
    Skrandies, Wolfgang
    CLINICAL NEUROPHYSIOLOGY, 2016, 127 (04) : 1978 - 1983