Critical Magnetic Field Strength for Suppression of the Richtmyer-Meshkov Instability in Plasmas

被引:61
|
作者
Sano, Takayoshi [1 ]
Inoue, Tsuyoshi [2 ]
Nishihara, Katsunobu [1 ]
机构
[1] Osaka Univ, Inst Laser Engn, Suita, Osaka 5650871, Japan
[2] Aoyama Gakuin Univ, Dept Math & Phys, Sagamihara, Kanagawa 2525258, Japan
关键词
ACCELERATION; GROWTH;
D O I
10.1103/PhysRevLett.111.205001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The critical strength of a magnetic field required for the suppression of the Richtmyer-Meshkov instability (RMI) is investigated numerically by using a two-dimensional single-mode analysis. For the cases of magnetohydrodynamic parallel shocks, the RMI can be stabilized as a result of the extraction of vorticity from the interface. A useful formula describing a critical condition for magnetohydrodynamic RMI is introduced and is successfully confirmed by direct numerical simulations. The critical field strength is found to be largely dependent on the Mach number of the incident shock. If the shock is strong enough, even low-beta plasmas can be subject to the growth of the RMI.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Numerical simulation of Richtmyer-Meshkov instability
    FU Dexun
    State Key Laboratory of Scientific and Engineering Computing
    Science China Mathematics, 2004, (S1) : 234 - 244
  • [42] Impulsive model for the Richtmyer-Meshkov instability
    Vandenboomgaerde, M
    Mugler, C
    Gauthier, S
    PHYSICAL REVIEW E, 1998, 58 (02): : 1874 - 1882
  • [43] Numerical simulation of Richtmyer-Meshkov instability
    Fu, DX
    Ma, YW
    Zhang, LB
    Tian, BL
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2004, 47 (Suppl 1): : 234 - 244
  • [44] Numerical simulation of Richtmyer-Meshkov instability
    Dexun Fu
    Yanwen Ma
    Linbo Zhang
    Baolin Tian
    Science in China Series A: Mathematics, 2004, 47 : 234 - 244
  • [45] The impact of compressibility in Richtmyer-Meshkov instability
    Fu, Zebang
    Wang, Chuanxing
    Lin, Zihan
    Zhu, Guohuai
    Wang, Kai
    Luo, Hui
    PHYSICS OF PLASMAS, 2025, 32 (02)
  • [46] The bipolar behavior of the Richtmyer-Meshkov instability
    Gowardhan, Akshay A.
    Ristorcelli, J. Ray
    Grinstein, Fernando F.
    PHYSICS OF FLUIDS, 2011, 23 (07)
  • [47] Suppression of the Richtmyer-Meshkov instability due to a density transition layer at the interface
    Sano, Takayoshi
    Ishigure, Kazuki
    Cobos-Campos, Fransisco
    PHYSICAL REVIEW E, 2020, 102 (01)
  • [48] Dynamics of the bubble front in the Richtmyer-Meshkov instability
    Abarzhi, SI
    LASER AND PARTICLE BEAMS, 2003, 21 (03) : 425 - 428
  • [49] Nonlinear behaviour of convergent Richtmyer-Meshkov instability
    Luo, Xisheng
    Li, Ming
    Ding, Juchun
    Zhai, Zhigang
    Si, Ting
    JOURNAL OF FLUID MECHANICS, 2019, 877 : 130 - 141
  • [50] Spherical Richtmyer-Meshkov instability for axisymmetric flow
    Dutta, S
    Glimm, J
    Grove, JW
    Sharp, DH
    Zhang, YM
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2004, 65 (4-5) : 417 - 430