A classification of Motzkin numbers modulo 8

被引:0
|
作者
Wang, Ying [1 ]
Xin, Guoce [1 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2018年 / 25卷 / 01期
基金
中国国家自然科学基金;
关键词
Motzkin numbers; congruence classes; CONGRUENCES; CATALAN;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The well-known Motzkin numbers were conjectured by Deutsch and Sagan to be nonzero modulo 8. The conjecture was first proved by Sen-Peng Eu, Shu-chung Liu and Yeong-Nan Yeh by using the factorial representation of the Catalan numbers. We present a short proof by finding a recursive formula for Motzkin numbers modulo 8. Moreover, such a recursion leads to a full classification of Motzkin numbers modulo 8.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Bell Numbers Modulo p
    Gallardo, Luis Henri
    APPLIED MATHEMATICS E-NOTES, 2023, 23 : 40 - 48
  • [32] Congruences modulo for Euler numbers
    Seki, Shin-ichiro
    RAMANUJAN JOURNAL, 2016, 40 (01): : 201 - 205
  • [33] SOME NEW SEQUENCES GENERALIZING THE CATALAN AND MOTZKIN NUMBERS
    STEIN, PR
    WATERMAN, MS
    DISCRETE MATHEMATICS, 1979, 26 (03) : 261 - 272
  • [34] On Generalizing Motzkin Numbers using k-Trees
    Jani, Mahendra
    Zeleke, Melkamu
    ARS COMBINATORIA, 2008, 89 : 287 - 297
  • [35] Analytic properties of combinatorial triangles related to Motzkin numbers
    Chen, Xi
    Wang, Yi
    Zheng, Sai-Nan
    DISCRETE MATHEMATICS, 2020, 343 (12)
  • [36] Motzkin Numbers, Central Trinomial Coefficients and Hybrid Polynomials
    Blasiak, P.
    Dattoli, G.
    Horzela, A.
    JOURNAL OF INTEGER SEQUENCES, 2008, 11 (01)
  • [37] Supercongruences involving Motzkin numbers and central trinomial coefficients
    Liu, Ji-Cai
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2024, 67 (04) : 1060 - 1084
  • [38] Several explicit and recursive formulas for generalized Motzkin numbers
    Qi, Feng
    Guo, Bai-Ni
    AIMS MATHEMATICS, 2020, 5 (02): : 1333 - 1345
  • [39] THE DISTRIBUTION OF BERNOULLI NUMBERS MODULO PRIMES
    FOUCHE, WL
    ARCHIV DER MATHEMATIK, 1988, 50 (02) : 139 - 144
  • [40] Structure of Triangular Numbers Modulo m
    Ulness, Darin J.
    APPLIEDMATH, 2022, 2 (03): : 326 - 358