Attainable region analysis for continuous production of second generation bioethanol

被引:9
|
作者
Scott, Felipe [1 ,2 ]
Conejeros, Raul [1 ,2 ]
Aroca, German [1 ,2 ]
机构
[1] Pontificia Univ Catolica Valparaiso, Sch Biochem Engn, Valparaiso, Chile
[2] Bioenercel SA, Concepcion, Chile
来源
关键词
OPTIMAL REACTOR DESIGN; SOLIDS ENZYMATIC-HYDROLYSIS; ETHANOL FERMENTATION; GEOMETRIC VIEWPOINT; OPTIMIZATION; ALGORITHM; BIOMASS; LIGNOCELLULOSE; NETWORKS; STATE;
D O I
10.1186/1754-6834-6-171
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Despite its semi-commercial status, ethanol production from lignocellulosics presents many complexities not yet fully solved. Since the pretreatment stage has been recognized as a complex and yield-determining step, it has been extensively studied. However, economic success of the production process also requires optimization of the biochemical conversion stage. This work addresses the search of bioreactor configurations with improved residence times for continuous enzymatic saccharification and fermentation operations. Instead of analyzing each possible configuration through simulation, we apply graphical methods to optimize the residence time of reactor networks composed of steady-state reactors. Although this can be easily made for processes described by a single kinetic expression, reactions under analysis do not exhibit this feature. Hence, the attainable region method, able to handle multiple species and its reactions, was applied for continuous reactors. Additionally, the effects of the sugars contained in the pretreatment liquor over the enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) were assessed. Results: We obtained candidate attainable regions for separate enzymatic hydrolysis and fermentation (SHF) and SSF operations, both fed with pretreated corn stover. Results show that, despite the complexity of the reaction networks and underlying kinetics, the reactor networks that minimize the residence time can be constructed by using plug flow reactors and continuous stirred tank reactors. Regarding the effect of soluble solids in the feed stream to the reactor network, for SHF higher glucose concentration and yield are achieved for enzymatic hydrolysis with washed solids. Similarly, for SSF, higher yields and bioethanol titers are obtained using this substrate. Conclusions: In this work, we demonstrated the capabilities of the attainable region analysis as a tool to assess the optimal reactor network with minimum residence time applied to the SHF and SSF operations for lignocellulosic ethanol production. The methodology can be readily modified to evaluate other kinetic models of different substrates, enzymes and microorganisms when available. From the obtained results, the most suitable reactor configuration considering residence time and rheological aspects is a continuous stirred tank reactor followed by a plug flow reactor (both in SSF mode) using washed solids as substrate.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Comparative evaluations of cellulosic raw materials for second generation bioethanol production
    Jeon, Y. J.
    Xun, Z.
    Rogers, P. L.
    LETTERS IN APPLIED MICROBIOLOGY, 2010, 51 (05) : 518 - 524
  • [22] Thermophilic ethanologenesis: future prospects for second-generation bioethanol production
    Taylor, Mark P.
    Eley, Kirsten L.
    Martin, Steve
    Tuffin, Maria I.
    Burton, Stephanie G.
    Cowan, Donald A.
    TRENDS IN BIOTECHNOLOGY, 2009, 27 (07) : 398 - 405
  • [23] Introducing a new salty waste for second-generation bioethanol production
    Demiray, Ekin
    Karatay, Sevgi Ertugrul
    Ekici, Harun
    Donmez, Goenuel
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2018, 40 (17) : 2070 - 2078
  • [24] Water footprint analysis of second-generation bioethanol in Taiwan
    Chiu, Chung Chia
    Shiang, Wei-Jung
    Lin, Chiuhsiang Joe
    Wang, Ching-Huei
    Chang, Der-Ming
    JOURNAL OF CLEANER PRODUCTION, 2015, 101 : 271 - 277
  • [25] Development of continuous cultivation process for oil production through bioconversion of minimally treated waste streams from second-generation bioethanol production
    Singh, Dilip
    Mehta, Preeti
    Saxena, Rohit
    Barrow, Colin J.
    Puri, Munish
    Tuli, Deepak K.
    Mathur, Anshu S.
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2018, 93 (10) : 3018 - 3027
  • [27] Second Generation Bioethanol: Challenges and Perspectives
    Koltermann, Andre
    JOURNAL OF BIOTECHNOLOGY, 2010, 150 : S553 - S553
  • [28] Optimization Pretreatment Condition of Sweet Sorghum Bagasse for Production of Second Generation Bioethanol
    Sudiyani, Yanni
    Waluyo, Joko
    Triwahyuni, Eka
    Burhani, Dian
    Muryanto
    Primandaru, Prasetyo
    Riandy, Andika Putra
    Sumardi, Novia
    INTERNATIONAL SYMPOSIUM ON APPLIED CHEMISTRY (ISAC) 2016, 2017, 1803
  • [29] Valorization of carob waste: Definition of a second-generation bioethanol production process
    Bahry, Hajar
    Pons, Agnes
    Abdallah, Rawa
    Pierre, Guillaume
    Delattre, Cedric
    Fayad, Nidal
    Taha, Samir
    Vial, Christophe
    BIORESOURCE TECHNOLOGY, 2017, 235 : 25 - 34
  • [30] Evaluation of process configurations for second generation integrated with first generation bioethanol production from sugarcane
    Dias, Marina O. S.
    Junqueira, Tassia L.
    Rossell, Carlos Eduardo V.
    Maciel Filho, Rubens
    Bonomi, Antonio
    FUEL PROCESSING TECHNOLOGY, 2013, 109 : 84 - 89