Moving Particle Semi-implicit method coupled with Finite Element Method for hydroelastic responses of floating structures in waves

被引:13
|
作者
Zhang, Guanyu [1 ]
Zhao, Weiwen [1 ]
Wan, Decheng [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Computat Marine Hydrodynam Lab CMHL, Shanghai 200240, Peoples R China
关键词
Moving Particle Semi-implicit (MPS); MPS-FEM coupled method; Wave-Structure Interaction (WSI); Flexible ship; FREE-SURFACE; NUMERICAL-SIMULATION; MPS METHOD; SLOSHING FLOWS; SPH MODEL; FLUID; HYDRODYNAMICS; BEHAVIOR; BODY; ALGORITHM;
D O I
10.1016/j.euromechflu.2022.04.005
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, the Moving Particle Semi-implicit (MPS) method and Finite Element Method (FEM) coupling computational method is applied to solve the problem of hydroelastic response of floating structures. The MPS method, a Lagrangian meshfree method, is suitable for simulating violent flows such as breaking waves on free surface. For a floating structure like the ship hull and floating breakwater, the typical feature of motion is a large rigid-body motion plus a relatively small deformation. Therefore, a rigid-flexible coupling strategy based on MPS-FEM coupled method is developed. According to the choice of structural element, appropriate data transformation schemes are adopted on the fluid-structure interface. In this paper, the grouping exchange technique is developed, which is applied on the interface of particle model-beam element. The reliability of present method is verified through simulations of fluid-structure interaction (FSI) problems including water entry of the elastic wedge, water entry of the marine panel and dam-break wave impacting on a mooring flexible platform, the obtained numerical result is in good agreement with the published data. Afterwards, the coupling of fluid and structure solver is also tested by various problems including the cases of three-dimensional deformable floating platform/ship slamming in waves.
引用
收藏
页码:63 / 82
页数:20
相关论文
共 50 条
  • [31] Moving Particle Semi-Implicit Method for Control of Swarm Robotic Systems
    Chua, Joseph Aldrin
    Lim, Laurence Gan
    Augusto, Gerardo
    Maningo, Jose Martin
    Bandala, Argel
    Vicerra, Ryan Rhay
    Dadios, Elmer
    2019 IEEE 11TH INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY, COMMUNICATION AND CONTROL, ENVIRONMENT, AND MANAGEMENT (HNICEM), 2019,
  • [32] Modified moving particle semi-implicit meshless method for incompressible fluids
    Jun Guo
    Zhi Tao
    Journal of Thermal Science, 2004, 13 : 226 - 234
  • [33] A short note on Dynamic Stabilization of Moving Particle Semi-implicit method
    Tsuruta, Naoki
    Khayyer, Abbas
    Gotoh, Hitoshi
    COMPUTERS & FLUIDS, 2013, 82 : 158 - 164
  • [34] Modified Moving Particle Semi-Implicit Meshless Method for Incompressible Fluids
    Jun GUO Zhi TAO Division 402
    JournalofThermalScience, 2004, (03) : 226 - 234
  • [35] Improved Moving Particle Semi-implicit method for multiphase flow with discontinuity
    Wang, Jianqiang
    Zhang, Xiaobing
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 346 : 312 - 331
  • [36] Calculation of water droplet impingement using the coupled method of rigid body dynamics and the moving particle semi-implicit method
    Shane Park
    Gyoodong Jeun
    Journal of Mechanical Science and Technology, 2011, 25 : 2787 - 2794
  • [37] Calculation of water droplet impingement using the coupled method of rigid body dynamics and the moving particle semi-implicit method
    Park, Shane
    Jeun, Gyoodong
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2011, 25 (11) : 2787 - 2794
  • [38] SIMULATION OF A SHIP WITH PARTIALLY FILLED TANKS ROLLING IN WAVES BY APPLYING MOVING PARTICLE SEMI-IMPLICIT METHOD
    Kouh, Jen-Shiang
    Chien, Hung-Pin
    Chang, Chun-Chung
    Chen, Yen-Jen
    INTERNATIONAL JOURNAL OF MARITIME ENGINEERING, 2009, 151 : 1 - 11
  • [39] Smooth particle approach for surface tension calculation in moving particle semi-implicit method
    Ichikawa, Hiroki
    Labrosse, Stephane
    FLUID DYNAMICS RESEARCH, 2010, 42 (03)
  • [40] Stable multiphase moving particle semi-implicit method for incompressible interfacial flow
    Duan, Guangtao
    Chen, Bin
    Koshizuka, Seiichi
    Xiang, Hao
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 318 : 636 - 666