scoreInvHap: Inversion genotyping for genome-wide association studies

被引:16
|
作者
Ruiz-Arenas, Carlos [1 ,2 ,3 ]
Caceres, Alejandro [1 ,3 ]
Lopez-Sanchez, Marcos [4 ,5 ]
Tolosana, Ignacio [1 ,3 ]
Perez-Jurado, Luis [4 ,6 ,7 ,8 ,9 ]
Gonzalez, Juan R. [1 ,2 ,3 ]
机构
[1] ISGlobal, Ctr Res Environm Epidemiol CREAL, Barcelona, Spain
[2] UPF, Barcelona, Spain
[3] CIBERESP, Barcelona, Spain
[4] Univ Pompeu Fabra, Genet Unit, Barcelona, Spain
[5] Ctr Invest Biomed Red Enfermedades Raras CIBERER, Barcelona, Spain
[6] Hosp del Mar Res Inst IMIM, Barcelona, Spain
[7] Womens & Childrens Hosp, SA Clin Genet, Adelaide, SA, Australia
[8] Univ Adelaide, Adelaide, SA, Australia
[9] South Australian Hlth & Med Res Inst, Adelaide, SA, Australia
来源
PLOS GENETICS | 2019年 / 15卷 / 07期
关键词
POLYMORPHIC INVERSIONS; ORIGIN; RISK;
D O I
10.1371/journal.pgen.1008203
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Polymorphic inversions contribute to adaptation and phenotypic variation. However, large multi-centric association studies of inversions remain challenging. We present scoreInvHap, a method to genotype inversions from SNP data for genome-wide association studies (GWASs), overcoming important limitations of current methods and outperforming them in accuracy and applicability. scoreInvHap calls individual inversion-genotypes from a similarity score to the SNPs of experimentally validated references. It can be used on different sources of SNP data, including those with low SNP coverage such as exome sequencing, and is easily adaptable to genotype new inversions, either in humans or in other species. We present 20 human inversions that can be reliably and easily genotyped with scoreInvHap to discover their role in complex human traits, and illustrate a first genome-wide association study of experimentally-validated human inversions. scoreInvHap is implemented in R and it is freely available from Bioconductor.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Genome-Wide Association Studies in Hepatology
    Weber, S.
    Gruenhage, F.
    Hall, R.
    Lammert, F.
    ZEITSCHRIFT FUR GASTROENTEROLOGIE, 2010, 48 (01): : 56 - 64
  • [42] Successes of Genome-wide Association Studies
    Klein, Robert J.
    Xu, Xing
    Mukherjee, Semanti
    Willis, Jason
    Hayes, James
    CELL, 2010, 142 (03) : 350 - 351
  • [43] Genome-wide association studies with metabolomics
    Jerzy Adamski
    Genome Medicine, 4
  • [44] Genome-Wide Association Studies and Beyond
    Witte, John S.
    ANNUAL REVIEW OF PUBLIC HEALTH, VOL 31, 2010, 31 : 9 - 20
  • [45] GnomADmerging: merge whole genome sequencing of controls with genotyping array of cases to perform genome-wide association studies
    Laporte, Fabien
    Holdcraft, Jacob
    Le Scouarnec, Solena
    Dina, Christian
    Schott, Jean-Jacques
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2024, 32 : 767 - 767
  • [46] Reduce the disturbance of bias in genome-wide association studies: Extreme-value genome-wide association studies (EGWAS)
    Li, Dalin
    Conti, David V.
    GENETIC EPIDEMIOLOGY, 2007, 31 (06) : 610 - 610
  • [47] Concept and design of a genome-wide association genotyping array tailored for transplantation-specific studies
    Li, Yun R.
    van Setten, Jessica
    Verma, Shefali S.
    Lu, Yontao
    Holmes, Michael V.
    Gao, Hui
    Lek, Monkol
    Nair, Nikhil
    Chandrupatla, Hareesh
    Chang, Baoli
    Karczewski, Konrad J.
    Wong, Chanel
    Mohebnasab, Maede
    Mukhtar, Eyas
    Phillips, Randy
    Tragante, Vinicius
    Hou, Cuiping
    Steel, Laura
    Lee, Takesha
    Garifallou, James
    Guettouche, Toumy
    Cao, Hongzhi
    Guan, Weihua
    Himes, Aubree
    van Houten, Jacob
    Pasquier, Andrew
    Yu, Reina
    Carrigan, Elena
    Miller, Michael B.
    Schladt, David
    Akdere, Abdullah
    Gonzalez, Ana
    Llyod, Kelsey M.
    McGinn, Daniel
    Gangasani, Abhinav
    Michaud, Zach
    Colasacco, Abigail
    Snyder, James
    Thomas, Kelly
    Wang, Tiancheng
    Wu, Baolin
    Alzahrani, Alhusain J.
    Al-Ali, Amein K.
    Al-Muhanna, Fahad A.
    Al-Rubaish, Abdullah M.
    Al-Mueilo, Samir
    Monos, Dimitri S.
    Murphy, Barbara
    Olthoff, Kim M.
    Wijmenga, Cisca
    GENOME MEDICINE, 2015, 7
  • [48] Concept and design of a genome-wide association genotyping array tailored for transplantation-specific studies
    Yun R. Li
    Jessica van Setten
    Shefali S. Verma
    Yontao Lu
    Michael V. Holmes
    Hui Gao
    Monkol Lek
    Nikhil Nair
    Hareesh Chandrupatla
    Baoli Chang
    Konrad J. Karczewski
    Chanel Wong
    Maede Mohebnasab
    Eyas Mukhtar
    Randy Phillips
    Vinicius Tragante
    Cuiping Hou
    Laura Steel
    Takesha Lee
    James Garifallou
    Toumy Guettouche
    Hongzhi Cao
    Weihua Guan
    Aubree Himes
    Jacob van Houten
    Andrew Pasquier
    Reina Yu
    Elena Carrigan
    Michael B. Miller
    David Schladt
    Abdullah Akdere
    Ana Gonzalez
    Kelsey M. Llyod
    Daniel McGinn
    Abhinav Gangasani
    Zach Michaud
    Abigail Colasacco
    James Snyder
    Kelly Thomas
    Tiancheng Wang
    Baolin Wu
    Alhusain J. Alzahrani
    Amein K. Al-Ali
    Fahad A. Al-Muhanna
    Abdullah M. Al-Rubaish
    Samir Al-Mueilo
    Dimitri S. Monos
    Barbara Murphy
    Kim M. Olthoff
    Cisca Wijmenga
    Genome Medicine, 7
  • [49] Imputation across genotyping arrays for genome-wide association studies: assessment of bias and a correction strategy
    Johnson, Eric O.
    Hancock, Dana B.
    Levy, Joshua L.
    Gaddis, Nathan C.
    Saccone, Nancy L.
    Bierut, Laura J.
    Page, Grier P.
    HUMAN GENETICS, 2013, 132 (05) : 509 - 522
  • [50] Genotyping and inflated type I error rate in genome-wide association case/control studies
    Sampson, Joshua N.
    Zhao, Hongyu
    BMC BIOINFORMATICS, 2009, 10