Intrinsic charge transport on the surface of organic semiconductors

被引:1044
|
作者
Podzorov, V
Menard, E
Borissov, A
Kiryukhin, V
Rogers, JA
Gershenson, ME
机构
[1] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA
[2] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.93.086602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The air-gap field-effect technique enabled realization of the intrinsic (not limited by static disorder) polaronic transport on the surface of rubrene (C42H28) crystals over a wide temperature range. The signatures of this intrinsic transport are the anisotropy of the carrier mobility, mu, and the growth of mu with cooling. Anisotropy of mu vanishes in the activation regime at low temperatures, where the transport is dominated by shallow traps. The deep traps, introduced by x-ray radiation, increase the field-effect threshold without affecting mu, an indication that the filled traps do not scatter polarons.
引用
收藏
页码:086602 / 1
页数:4
相关论文
共 50 条
  • [31] Intrinsic Charge Trapping in Organic and Polymeric Semiconductors: A Physical Chemistry Perspective
    Kaake, L. G.
    Barbara, P. F.
    Zhu, X. -Y.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (03): : 628 - 635
  • [32] Charge Saturation and Intrinsic Doping in Electrolyte-Gated Organic Semiconductors
    Atallah, Timothy L.
    Gustafsson, Martin V.
    Schmidt, Elliot
    Frisbie, C. Daniel
    Zhu, X. -Y.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (23): : 4840 - 4844
  • [33] Characterization of charge transport and electrical properties in disordered organic semiconductors
    Wang, L. G.
    Zhang, H. W.
    Tang, X. L.
    Song, Y. Q.
    Zhong, Z. Y.
    Li, Y. X.
    PHYSICA SCRIPTA, 2011, 84 (04)
  • [34] Role of the reorganization energy for charge transport in disordered organic semiconductors
    Saxena, R.
    Nikitenko, V. R.
    Fishchuk, I. I.
    Burdakov, Ya, V
    Metel, Yu, V
    Genoe, J.
    Baessler, H.
    Koehler, A.
    Kadashchuk, A.
    PHYSICAL REVIEW B, 2021, 103 (16)
  • [35] Theoretical tools for the description of charge transport in disordered organic semiconductors
    Nenashev, A. V.
    Oelerich, J. O.
    Baranovskii, S. D.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (09)
  • [36] Theoretical Prediction of Isotope Effects on Charge Transport in Organic Semiconductors
    Jiang, Yuqian
    Geng, Hua
    Shi, Wen
    Peng, Qian
    Zheng, Xiaoyan
    Shuai, Zhigang
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (13): : 2267 - 2273
  • [37] Two-Dimensional Charge Transport in Disordered Organic Semiconductors
    Brondijk, J. J.
    Roelofs, W. S. C.
    Mathijssen, S. G. J.
    Shehu, A.
    Cramer, T.
    Biscarini, F.
    Blom, P. W. M.
    de Leeuw, D. M.
    PHYSICAL REVIEW LETTERS, 2012, 109 (05)
  • [38] Effect of Coulomb correlation on charge transport in disordered organic semiconductors
    Liu, Feilong
    van Eersel, Harm
    Xu, Bojian
    Wilbers, Janine G. E.
    de Jong, Michel P.
    van der Wiel, Wilfred G.
    Bobbert, Peter A.
    Coehoorn, Reinder
    PHYSICAL REVIEW B, 2017, 96 (20)
  • [39] Electric field-dependent charge transport in organic semiconductors
    Li, Ling
    Van Winckel, Steven
    Genoe, Jan
    Heremans, Paul
    APPLIED PHYSICS LETTERS, 2009, 95 (15)
  • [40] Influence of Traps and Lorentz Force on Charge Transport in Organic Semiconductors
    Morab, Seema
    Sundaram, Manickam Minakshi
    Pivrikas, Almantas
    MATERIALS, 2023, 16 (13)