Understanding archetypes of fake news via fine-grained classification

被引:11
|
作者
Wang, Liqiang [1 ,2 ]
Wang, Yafang [2 ]
de Melo, Gerard [3 ]
Weikum, Gerhard [1 ]
机构
[1] Max Planck Inst Informat, Saarbrucken, Germany
[2] Shandong Univ, Dept Comp Sci, Jinan, Shandong, Peoples R China
[3] Rutgers State Univ, Dept Comp Sci, New Brunswick, NJ USA
基金
中国国家自然科学基金;
关键词
Fake news; Unreliable content; Social media; Fine-grained classification;
D O I
10.1007/s13278-019-0580-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fake news, doubtful statements and other unreliable content not only differ with regard to the level of misinformation but also with respect to the underlying intents. Prior work on algorithmic truth assessment has mostly pursued binary classifiers-factual versus fake-and disregarded these finer shades of untruth. In manual analyses of questionable content, in contrast, more fine-grained distinctions have been proposed, such as distinguishing between hoaxes, irony and propaganda or the six-way truthfulness ratings by the PolitiFact community. In this paper, we present a principled automated approach to distinguish these different cases while assessing and classifying news articles and claims. Our method is based on a hierarchy of five different kinds of fakeness and systematically explores a variety of signals from social media, capturing both the content and language of posts and the sharing and dissemination among users. The paper provides experimental results on the performance of our fine-grained classifier and a detailed analysis of the underlying features.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Fine-Grained Crowdsourcing for Fine-Grained Recognition
    Jia Deng
    Krause, Jonathan
    Li Fei-Fei
    2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 580 - 587
  • [42] Understanding Objects in Detail with Fine-grained Attributes
    Vedaldi, Andrea
    Mahendran, Siddharth
    Tsogkas, Stavros
    Maji, Subhransu
    Girshick, Ross
    Kannala, Juho
    Rahtu, Esa
    Kokkinos, Iasonas
    Blaschko, Matthew B.
    Weiss, David
    Taskar, Ben
    Simonyan, Karen
    Saphra, Naomi
    Mohamed, Sammy
    2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 3622 - 3629
  • [43] Fine-grained Interest Matching for Neural News Recommendation
    Wang, Heyuan
    Wu, Fangzhao
    Liu, Zheng
    Xie, Xing
    58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), 2020, : 836 - 845
  • [44] Propagating Fine-Grained Topic Labels in News Snippets
    Sarmento, Luis
    Nunes, Sergio
    Teixeira, Jorge
    Oliveira, Eugenio
    2009 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCES ON WEB INTELLIGENCE (WI) AND INTELLIGENT AGENT TECHNOLOGIES (IAT), VOL 3, 2009, : 515 - +
  • [45] Fusing Fine-Grained Information of Sequential News for Personalized News Recommendation
    Zhang, Jin-Cheng
    Zain, Azlan Mohd
    Zhou, Kai-Qing
    Chen, Xi
    Zhang, Ren-Min
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2023, PT II, 2023, 14147 : 119 - 125
  • [46] Fine-grained Sentiment Analysis of Foreign Exchange News
    Cheng Zhou
    Qi Tianmei
    Wang Jixiang
    Zhou Yu
    Wang Zhihong
    Guo Yi
    Zhao Junfeng
    5TH INTERNATIONAL CONFERENCE ON INFORMATION MANAGEMENT (ICIM 2019), 2019, : 279 - 284
  • [47] Research on the Fine-grained Plant Image Classification
    Hu, Zhifeng
    Zhang, Yin
    Tan, Liang
    PROCEEDINGS OF THE 2016 4TH INTERNATIONAL CONFERENCE ON MACHINERY, MATERIALS AND INFORMATION TECHNOLOGY APPLICATIONS, 2016, 71 : 1307 - 1311
  • [48] An Erudite Fine-Grained Visual Classification Model
    Chang, Dongliang
    Tong, Yujun
    Du, Ruoyi
    Hospedales, Timothy
    Song, Yi-Zhe
    Ma, Zhanyu
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 7268 - 7277
  • [49] Pairwise Confusion for Fine-Grained Visual Classification
    Dubey, Abhimanyu
    Gupta, Otkrist
    Guo, Pei
    Raskar, Ramesh
    Farrell, Ryan
    Naik, Nikhil
    COMPUTER VISION - ECCV 2018, PT XII, 2018, 11216 : 71 - 88
  • [50] Fine-Grained Age Group Classification in the wild
    Zhang, Ke
    Liu, Na
    Yuan, Xingfang
    Guo, Xinyao
    Gao, Ce
    Zhao, Zhenbing
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 788 - 793