A generalization of weight polynomials to matroids

被引:11
|
作者
Johnsen, Trygve [1 ]
Roksvold, Jan [1 ]
Verdure, Hugues [1 ]
机构
[1] UiT Arctic Univ Norway, Dept Math & Stat, N-9037 Tromso, Norway
关键词
Matroid; Weight enumerator; Linear code; Stanley-Reisner ideal; Higher weights; Tutte polynomial;
D O I
10.1016/j.disc.2015.10.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Generalizing polynomials previously studied in the context of linear codes, we define weight polynomials and an enumerator for a matroid M. Our main result is that these polynomials are determined by Betti numbers associated with No-graded minimal free resolutions of the Stanley-Reisner ideals of M and so-called elongations of M. Generalizing Greene's theorem from coding theory, we show that the enumerator of a matroid is equivalent to its Tutte polynomial. (c) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:632 / 645
页数:14
相关论文
共 50 条
  • [41] On a generalization of a class of polynomials
    Djordjevic, GB
    FIBONACCI QUARTERLY, 1998, 36 (02): : 110 - 117
  • [42] On a generalization of Hermite polynomials
    Krason, Piotr
    Milewski, Jan
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (05) : 2910 - 2920
  • [43] A generalization of Jacobsthal polynomials
    Swamy, MNS
    FIBONACCI QUARTERLY, 1999, 37 (02): : 141 - 144
  • [44] ON A GENERALIZATION OF CATALAN POLYNOMIALS
    Goubi, Mouloud
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2018, 33 (02): : 163 - 176
  • [45] Strongly inequivalent representations and Tutte polynomials of matroids
    Joseph E. Bonin
    algebra universalis, 2003, 49 : 289 - 303
  • [46] Real Stable Polynomials and Matroids: Optimization and Counting
    Straszak, Damian
    Vishnoi, Nisheeth K.
    STOC'17: PROCEEDINGS OF THE 49TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2017, : 370 - 383
  • [47] Strongly inequivalent representations and Tutte polynomials of matroids
    Bonin, JE
    ALGEBRA UNIVERSALIS, 2003, 49 (03) : 289 - 303
  • [48] GENERALIZATION OF GOTTLIEB POLYNOMIALS
    GENIN, R
    CALVEZ, LC
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1970, 271 (12): : 552 - &
  • [49] GENERALIZATION OF CHEBYSHEV POLYNOMIALS
    SHPARLINSKII, IE
    SIBERIAN MATHEMATICAL JOURNAL, 1990, 31 (01) : 183 - 185
  • [50] GENERALIZATION OF BATEMAN POLYNOMIALS
    Ali, Asad
    Iqbal, Muhammad Zafar
    Anwer, Bilal
    Mehmood, Ather
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2019, 17 (05): : 803 - 808