Self-Supported ZIF-Derived Co3O4 Nanoparticles-Decorated Porous N-Doped Carbon Fibers as Oxygen Reduction Catalyst

被引:25
|
作者
Song, Li [1 ]
Tang, Jing [2 ,3 ,4 ]
Wang, Tao [1 ]
Wu, Chao [1 ]
Ide, Yusuke [2 ]
He, Jianping [1 ]
Yamauchi, Yusuke [3 ,4 ,5 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Jiangsu Key Lab Mat & Technol Energy Convers, Coll Mat Sci & Technol, 29 Yudao St, Nanjing 210016, Jiangsu, Peoples R China
[2] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton MANA, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[3] Univ Queensland, Sch Chem Engn, Brisbane, Qld 4072, Australia
[4] Univ Queensland, AIBN, Brisbane, Qld 4072, Australia
[5] Kyung Hee Univ, Dept Plant & Environm New Resources, 1732 Deogyeong Daero, Yongin 446701, Gyeonggi Do, South Korea
基金
澳大利亚研究理事会; 中国国家自然科学基金; 日本学术振兴会;
关键词
carbon fibers; cobalt oxides; electrocatalysts; oxygen reduction reaction; zeolitic imidazolate frameworks; METAL-ORGANIC FRAMEWORKS; FREE CATHODES; EFFICIENT; PERFORMANCE; LITHIUM; GRAPHENE; NITROGEN; BATTERY; BINDER; COBALT;
D O I
10.1002/chem.201900197
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Oxygen reduction is a significant cathodic reaction in the state-of-art clean energy devices such as fuel cell and metal-oxygen battery. Here, ZIF-incorporated hybrid polymeric fibres have been fabricated by using a dual-phase electrospinning method. These are then transformed into Co3O4-nanoparticle-decorated porous N-doped carbon fibres (ZIF-Co3O4/NCF) through multi-step annealing treatment. The resultant ZIF-Co3O4/NCF is interweaved into a self-supported film and can be used as a bi-functional catalyst for catalysing oxygen reduction in both aqueous and non-aqueous electrolytes. Electrochemical tests demonstrate that ZIFCo(3)O(4)/NCF displays a high catalytic activity for oxygen re-duction with a half-wave potential (E1/2) of 0.813 V (vs. RHE) and an almost favourable four-electron reduction pathway in alkaline medium. ZIF-Co3O4/NCF catalyst only shows 4 mV negative shift of E(1/)2 after 5000 continuous CV cycles. In addition, the ZIF-Co3O4/NCF can be applied as the cathode catalyst of non-aqueous Li-O-2 battery, exhibiting a remarkable ORR activity in LiPF6 contained 1,2-dimethoxyethane electrolyte. The excellent electrocatalytic performance of ZIF-Co3O4/ NCF is probably due to the abundance of active sites of graphitic carbon-wrapped Co3O4 nanoparticles, as well as the cross-linked fibrous nitrogen-doped carbon texture.
引用
收藏
页码:6807 / 6813
页数:7
相关论文
共 50 条
  • [21] Electrocatalytic oxygen reduction over Co@Co3O4/N-doped porous carbon derived from pyrolysis of ZIF-8/67 on cellulose nanofibers
    Lee, Yu-Ri
    Yoo, Hyeonseok
    Choi, Jinsub
    Ahn, Wha-Seung
    CELLULOSE, 2020, 27 (05) : 2723 - 2735
  • [22] Electrocatalytic oxygen reduction over Co@Co3O4/N-doped porous carbon derived from pyrolysis of ZIF-8/67 on cellulose nanofibers
    Yu-Ri Lee
    Hyeonseok Yoo
    Jinsub Choi
    Wha-Seung Ahn
    Cellulose, 2020, 27 : 2723 - 2735
  • [23] Delineating the roles of Co3O4 and N-doped carbon nanoweb (CNW) in bifunctional Co3O4/CNW catalysts for oxygen reduction and oxygen evolution reactions
    Liu, Siyang
    Li, Longjun
    Ahnb, Hyun S.
    Manthiram, Arumugam
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (21) : 11615 - 11623
  • [24] Fe-embedded ZIF-derived N-doped carbon nanoparticles for enhanced selective reduction of p-nitrophenol
    Yu, Weiting
    Qiu, Leben
    Zhu, Jieyun
    Chen, Sizhuo
    Song, Shuang
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (02):
  • [25] ZIF-Derived Co Nanoparticles Embedded in Pumpkin Seedlike, Hollow N-Doped Carbon Structures for Efficient Microwave Absorption
    Han, Xueyun
    Zhang, Siyu
    Qiao, Lei
    Peng, Peidong
    Fu, Chenghao
    Liu, Ke
    Ma, Zhongjun
    ACS APPLIED NANO MATERIALS, 2024, 7 (05) : 5414 - 5425
  • [26] Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts
    Jia, Hailang
    Li, Hongcheng
    Ji, Pengcheng
    Teng, Yang
    Guan, Mingyun
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2024, 40 (04) : 693 - 700
  • [27] Fine Co Nanoparticles Encapsulated in a N-Doped Porous Carbon Matrix with Superficial N-Doped Porous Carbon Nanofibers for Efficient Oxygen Reduction
    Ma, Xiao
    Zhao, Xue
    Huang, Jianshe
    Sun, Litai
    Li, Qun
    Yang, Xiurong
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (26) : 21747 - 21755
  • [28] Fine Co nanoparticles encapsulated in N-doped porous carbon for efficient oxygen reduction
    Liu, Lei
    Zhang, Yihe
    Yu, Xuelian
    NEW JOURNAL OF CHEMISTRY, 2019, 43 (24) : 9666 - 9672
  • [29] Hemp derived N-doped highly porous carbon containing Co nanoparticles as electrocatalyst for oxygen reduction reaction
    Zhang, Chao
    Shu, Jinhe
    Shi, Shuxian
    Nie, Jun
    Ma, Guiping
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 559 (559) : 21 - 28
  • [30] Pt Nanoparticles Supported on N-Doped Porous Carbon Derived from Metal-Organic Frameworks for Oxygen Reduction
    Wang, Chao
    Wang, Xiaodan
    Lai, Fengyu
    Liu, Zheng
    Dong, Ruohao
    Li, Wen
    Sun, Hongxia
    Geng, Baoyou
    ACS APPLIED NANO MATERIALS, 2020, 3 (06) : 5698 - 5705