LAGRANGE MULTIPLIER RULE FOR NONCONVEX SET-VALUED OPTIMIZATION PROBLEM

被引:0
|
作者
Huang, Hui [1 ]
机构
[1] Yunnan Univ, Dept Math, Kunming 650504, Yunnan, Peoples R China
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2017年 / 13卷 / 03期
基金
中国国家自然科学基金;
关键词
weak subgradient; set-valued mapping; existence; optimality condition; OPTIMALITY CONDITIONS; MAPPINGS; SUBDIFFERENTIALS; MULTIFUNCTIONS; THEOREM;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, in terms of circatangent epiderivative, a new kind of weak subdifferential for set-valued mappings is introduced. An existence theorem of this kind of weak subgradient is established. In terms of Lagrange multiplier, necessary and sufficient optimality conditions are established for set-valued optimization problems with constraint sets being determined by a geometric set and a cone-convex set-valued mapping. In particular, the necessary optimality conditions do not require any convexity of the objective mapping and the geometric set.
引用
收藏
页码:403 / 419
页数:17
相关论文
共 50 条
  • [21] Lagrangian conditions for approximate solutions on nonconvex set-valued optimization problems
    Long, X. J.
    Li, X. B.
    Zeng, J.
    OPTIMIZATION LETTERS, 2013, 7 (08) : 1847 - 1856
  • [22] Scalar Lagrange Multiplier Rules for Set-Valued Problems in Infinite-Dimensional Spaces
    Rodriguez-Marin, Luis
    Sama, Miguel
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 156 (03) : 683 - 700
  • [23] Approximate solutions for nonconvex set-valued optimization and vector variational inequality
    Guolin Yu
    Xiangyu Kong
    Journal of Inequalities and Applications, 2015
  • [24] Scalar Lagrange Multiplier Rules for Set-Valued Problems in Infinite-Dimensional Spaces
    Luis Rodríguez-Marín
    Miguel Sama
    Journal of Optimization Theory and Applications, 2013, 156 : 683 - 700
  • [25] Approximate solutions for nonconvex set-valued optimization and vector variational inequality
    Yu, Guolin
    Kong, Xiangyu
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [26] THE FERMAT RULE FOR SET OPTIMIZATION PROBLEMS WITH LIPSCHITZIAN SET-VALUED MAPPINGS
    Bouza, Gemayqzel
    Quintana, Ernest
    Tammer, Christiane
    Vu Anh Tuan
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (05) : 1137 - 1174
  • [27] On set-valued optimization
    Kuroiwa, D
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (02) : 1395 - 1400
  • [28] Equilibria of set-valued maps on nonconvex domains
    BenElMechaiekh, H
    Kryszewski, W
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (10) : 4159 - 4179
  • [29] STRONG APPROXIMATION FOR NONCONVEX SET-VALUED MAPS
    Ben-El-Mechaiekh, H.
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2008, 9 (01) : 65 - 70
  • [30] APPROXIMATE SELECTIONS FOR NONCONVEX SET-VALUED MAPPINGS
    ANICHINI, G
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1990, 4B (02): : 313 - 326