Kawashima's relations for interpolated multiple zeta values

被引:7
|
作者
Tanaka, Tatsushi [1 ]
Wakabayashi, Noriko [2 ]
机构
[1] Kyoto Sangyo Univ, Dept Math, Fac Sci, Kita Ku, Kyoto, Kyoto 6038555, Japan
[2] Ritsumeikan Univ, Coll Sci & Engn, Kusatsu, Shiga 5258577, Japan
基金
日本学术振兴会;
关键词
t-MZVs; Harmonic products; t-Kawashima relations; Cyclic sum formula;
D O I
10.1016/j.jalgebra.2015.09.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, Yamamoto introduced polynomials in one variable t which interpolates multiple zeta and zeta-star values (t-MZVs for short), provided new prospects on two-one conjecture of Ohno and Zudilin and proved the cyclic sum formula for t-MZVs. In this paper, we establish a generalization of Kawashima's relations (t-Kawashima relations) for t-MZVs. We prove the cyclic sum formula for t-MZVs using a type of derivation operator, together with the t-Kawashima relations. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:424 / 431
页数:8
相关论文
共 50 条
  • [31] Intersection of duality and derivation relations for multiple zeta values
    Kimura, Aiki
    JOURNAL OF ALGEBRA, 2024, 646 : 412 - 432
  • [32] Double shuffle relations for multiple Dedekind zeta values
    Horozov, Ivan
    ACTA ARITHMETICA, 2017, 180 (03) : 201 - 227
  • [33] Quasi-derivation relations for multiple zeta values revisited
    Kaneko, Masanobu
    Murahara, Hideki
    Murakami, Takuya
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2020, 90 (02): : 151 - 160
  • [34] Sum Relations of Multiple Zeta Star Values with Even Arguments
    Chen, Kwang-Wu
    Chung, Chan-Liang
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (03)
  • [35] Quadratic relations for a q-analogue of multiple zeta values
    Yoshihiro Takeyama
    The Ramanujan Journal, 2012, 27 : 15 - 28
  • [36] Sum Relations of Multiple Zeta Star Values with Even Arguments
    Kwang-Wu Chen
    Chan-Liang Chung
    Mediterranean Journal of Mathematics, 2017, 14
  • [37] Explicit relations between multiple zeta values and related variants
    Xu, Ce
    ADVANCES IN APPLIED MATHEMATICS, 2021, 130 (130)
  • [38] Quasi-derivation relations for multiple zeta values revisited
    Masanobu Kaneko
    Hideki Murahara
    Takuya Murakami
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2020, 90 : 151 - 160
  • [39] Quadratic relations for a q-analogue of multiple zeta values
    Takeyama, Yoshihiro
    RAMANUJAN JOURNAL, 2012, 27 (01): : 15 - 28
  • [40] Explicit relations of some variants of convoluted multiple zeta values
    Xu, Ce
    Zhao, Jianqiang
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2025,