Local and Global Discriminative Learning for Unsupervised Feature Selection

被引:33
|
作者
Du, Liang [1 ,2 ]
Shen, Zhiyong [3 ]
Li, Xuan [3 ]
Zhou, Peng [1 ,2 ]
Shen, Yi-Dong [1 ]
机构
[1] Chinese Acad Sci, Inst Software, State Key Lab Comp Sci, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Baidu Inc, Beijing, Peoples R China
关键词
D O I
10.1109/ICDM.2013.23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we consider the problem of feature selection in unsupervised learning scenario. Recently, spectral feature selection methods, which leverage both the graph Laplacian and the learning mechanism, have received considerable attention. However, when there are lots of irrelevant or noisy features, such graphs may not be reliable and then mislead the selection of features. In this paper, we propose the Local and Global Discriminative learning for unsupervised Feature Selection (LGDFS), which integrates a global and a set of locally linear regression model with weighted l(2)-norm regularization into a unified learning framework. By exploring the discriminative and geometrical information in the weighted feature space, which alleviates the effects of the irrelevant features, our approach can find the most representative features to well respect the cluster structure of the data. Experimental results on several benchmark data sets are provided to validate the effectiveness of the proposed approach.
引用
收藏
页码:131 / 140
页数:10
相关论文
共 50 条
  • [21] Global and local structure preserving sparse subspace learning: An iterative approach to unsupervised feature selection
    Zhou, Nan
    Xu, Yangyang
    Cheng, Hong
    Fang, Jun
    Pedrycz, Witold
    PATTERN RECOGNITION, 2016, 53 : 87 - 101
  • [22] Unsupervised feature selection via local structure learning and sparse learning
    Lei, Cong
    Zhu, Xiaofeng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (22) : 29605 - 29622
  • [23] Unsupervised feature selection via local structure learning and sparse learning
    Cong Lei
    Xiaofeng Zhu
    Multimedia Tools and Applications, 2018, 77 : 29605 - 29622
  • [24] Discriminative Feature Learning for Unsupervised Video Summarization
    Jung, Yunjae
    Cho, Donghyeon
    Kim, Dahun
    Woo, Sanghyun
    Kweon, In So
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 8537 - 8544
  • [25] Local sparse discriminative feature selection
    Zhang, Canyu
    Shi, Shaojun
    Chen, Yanping
    Nie, Feiping
    Wang, Rong
    INFORMATION SCIENCES, 2024, 662
  • [26] Unsupervised Feature Learning Through Divergent Discriminative Feature Accumulation
    Szerlip, Paul A.
    Morse, Gregory
    Pugh, Justin K.
    Stanley, Kenneth O.
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 2979 - 2985
  • [27] Local and Global Structure Preservation for Robust Unsupervised Spectral Feature Selection
    Zhu, Xiaofeng
    Zhang, Shichao
    Hu, Rongyao
    Zhu, Yonghua
    Song, Jingkuan
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2018, 30 (03) : 517 - 529
  • [28] Feature selection for unsupervised learning
    Dy, JG
    Brodley, CE
    JOURNAL OF MACHINE LEARNING RESEARCH, 2004, 5 : 845 - 889
  • [29] Feature Selection for Unsupervised Learning
    Adhikary, Jyoti Ranjan
    Murty, M. Narasimha
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT III, 2012, 7665 : 382 - 389
  • [30] Unsupervised Feature Selection for Microarray Gene Expression Data Based on Discriminative Structure Learning
    Ye, Xiucai
    Sakurai, Tetsuya
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2018, 24 (06) : 725 - 741