Perelomov and Barut-Girardello Su(1,1) coherent states for harmonic oscillator in one-dimensional half space

被引:1
|
作者
Liu, Q. H. [1 ]
Zhuo, H.
机构
[1] Hunan Univ, Sch Theoret Phys, Changsha 410082, Peoples R China
[2] Hunan Univ, Dept Appl Phys, Changsha 410082, Peoples R China
来源
关键词
quantum mechanics;
D O I
10.1142/S0217751X06030862
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The Perelomov and the Barut-Girardello SU(1, 1) coherent states for harmonic oscillator in one-dimensional half space are constructed. Results show that the uncertainty products Delta x Delta p for these two coherent states are bound from below root 9/4 - 6/pi that is the uncertainty for the ground state, and the mean values for position x and momentum p in classical limit go over to their classical quantities respectively. In classical limit, the uncertainty given by Perelomov coherent does not vanish, and the Barut-Girardello coherent state reveals a node structure when positioning closest to the boundary x = 0 which has not been observed in coherent states for other systems.
引用
收藏
页码:2635 / 2644
页数:10
相关论文
共 50 条
  • [31] Renormalisation with SU(1,1) coherent states on the LQC Hilbert space
    Bodendorfer, Norbert
    Wuhrer, Dennis
    CLASSICAL AND QUANTUM GRAVITY, 2020, 37 (18)
  • [32] SU(1,1) SQUEEZING OF SU(1,1) GENERALIZED COHERENT STATES
    BUZEK, V
    JOURNAL OF MODERN OPTICS, 1990, 37 (03) : 303 - 316
  • [33] New SU(1,1) position-dependent effective mass coherent states for a generalized shifted harmonic oscillator
    Yahiaoui, Sid-Ahmed
    Bentaiba, Mustapha
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (02)
  • [34] Lewis-Riesenfeld quantization and SU(1,1) coherent states for 2D damped harmonic oscillator
    Lawson, Latevi M.
    Avossevou, Gabriel Y. H.
    Gouba, Laure
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (11)
  • [35] SU(1,1) and SU(2) approaches to the radial oscillator: Generalized coherent states and squeezing of variances
    Rosas-Ortiz, Oscar
    Cruz y Cruz, Sara
    Enriquez, Marco
    ANNALS OF PHYSICS, 2016, 373 : 346 - 373
  • [36] DYNAMICS OF SU(1,1) COHERENT STATES
    GERRY, CC
    PHYSICAL REVIEW A, 1985, 31 (04): : 2721 - 2723
  • [37] On SU(1,1) intelligent coherent states
    Al-Kader, G. M. Abd
    Obada, A-S F.
    PHYSICA SCRIPTA, 2008, 78 (03)
  • [38] SU(1, 1) and SU(2) Perelomov number coherent states: algebraic approach for general systems
    D. Ojeda-Guillén
    M. Salazar-Ramírez
    R. D. Mota
    V. D. Granados
    Journal of Nonlinear Mathematical Physics, 2016, 23 : 607 - 619
  • [39] SU(1,1) solution for the Dunkl oscillator in two dimensions and its coherent states
    M. Salazar-Ramırez
    D. Ojeda-Guillén
    R. D. Mota
    V. D. Granados
    The European Physical Journal Plus, 132
  • [40] SU(1,1) solution for the Dunkl oscillator in two dimensions and its coherent states
    Salazar-Ramirez, M.
    Ojeda-Guillen, D.
    Mota, R. D.
    Granados, V. D.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (01):