Fractals and the Fock-Bargmann Representation of Coherent States

被引:0
|
作者
Vitiello, Giuseppe [1 ]
机构
[1] Univ Salerno, Dipartimento Matemat & Informat, I-84100 Salerno, Italy
来源
关键词
BACKGROUND EEG ACTIVITY; QUANTUM; DISSIPATION; ORIGIN;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The self-similarity property of deterministic fractals is studied in the framework of the theory of entire analytical functions. The functional realization of fractals in terms of the q-deformed algebra of coherent states is presented. This sheds some light on the dynamical formation of fractals and provides some insight into the geometrical properties of coherent states. The global nature of fractals appears to emerge from coherent local deformation processes.
引用
收藏
页码:6 / 16
页数:11
相关论文
共 50 条
  • [41] Coherent states and squeezed states in interacting Fock space
    Das, PK
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2002, 41 (06) : 1099 - 1106
  • [42] Coherent States and Squeezed States in Interacting Fock Space
    P. K. Das
    International Journal of Theoretical Physics, 2002, 41 : 1099 - 1106
  • [43] COHERENT-STATE REPRESENTATION OF QUANTUM FRACTALS IN INCOMMENSURATE SYSTEMS
    WANG, K
    CHU, SI
    CHEMICAL PHYSICS LETTERS, 1990, 165 (2-3) : 199 - 207
  • [44] Bargmann transform and statistical properties for nonlinear coherent states of the isotonic oscillator
    Ouirdani, Ghayth
    El Moize, Othmane
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2024, 79 (01): : 71 - 81
  • [45] Generalized Coherent States Representation
    R. Sh. Kalmetev
    Yu. N. Orlov
    V. Zh. Sakbaev
    Lobachevskii Journal of Mathematics, 2021, 42 : 2608 - 2614
  • [46] Generalized Coherent States Representation
    Kalmetev, R. Sh.
    Orlov, Yu. N.
    Sakbaev, V. Zh.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (11) : 2608 - 2614
  • [47] A conjugate for the Bargmann representation
    Ribeiro, A. D.
    Parisio, F.
    de Aguiar, M. A. M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (10)
  • [48] Fractals as macroscopic manifestation of squeezed coherent states and brain dynamics
    Vitiello, Giuseppe
    SYMMETRIES IN SCIENCE XV, 2012, 380
  • [49] Uniform approximation for the coherent-state propagator using a conjugate application of the Bargmann representation
    Ribeiro, AD
    Novaes, M
    de Aguiar, MAM
    PHYSICAL REVIEW LETTERS, 2005, 95 (05)
  • [50] Bargmann-Fock Sheaves on Kahler Manifolds
    Chan, Kwokwai
    Conan Leung, Naichung
    Li, Qin
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 388 (03) : 1297 - 1322