Quasi-optimal partial order reduction

被引:0
|
作者
Coti, Camille [1 ]
Petrucci, Laure [1 ]
Rodriguez, Cesar [1 ,3 ]
Sousa, Marcelo [2 ]
机构
[1] Univ Sorbonne Paris Nord, CNRS, LIPN, UMR 7030, Villetaneuse, France
[2] Univ Oxford, Oxford, England
[3] Diffblue Ltd, Oxford, England
关键词
Program analysis; Dynamic analysis; Partial-order reduction; Non-interleaving semantics; PETRI NETS;
D O I
10.1007/s10703-020-00350-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A dynamic partial order reduction (DPOR) algorithm is optimal when it always explores at most one representative per Mazurkiewicz trace. Existing literature suggests that the reduction obtained by the non-optimal, state-of-the-art Source-DPOR (SDPOR) algorithm is comparable to optimal DPOR. We show the first program with O(n) Mazurkiewicz traces where SDPOR explores O(2(n)) redundant schedules. We furthermore identify the cause of this blow-up as an NP-hard problem. Our main contribution is a new approach, called Quasi-Optimal POR, that can arbitrarily approximate an optimal exploration using a provided constant k. We present an implementation of our method in a new tool called DPU using specialised data structures. Experiments with DPU, including Debian packages, show that optimality is achieved with low values of k, outperforming state-of-the-art tools.
引用
收藏
页码:3 / 33
页数:31
相关论文
共 50 条
  • [21] On constructing quasi-optimal robust systems
    M. G. Zotov
    Journal of Computer and Systems Sciences International, 2013, 52 : 677 - 685
  • [22] Algorithm quasi-optimal (AQ) learning
    Cervone, Guido
    Franzese, Pasquale
    Keesee, Allen P. K.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (02) : 218 - 236
  • [23] Quasi-optimal control of dynamic systems
    Aleksandrov, V. M.
    AUTOMATION AND REMOTE CONTROL, 2016, 77 (07) : 1163 - 1179
  • [24] COMPUTING A SPLINE WITH QUASI-OPTIMAL NODES
    DELAYE, A
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1989, 30 (3-4) : 249 - 255
  • [25] Adaptive Security with Quasi-Optimal Rate
    Hemenway, Brett
    Ostrovsky, Rafail
    Richelson, Silas
    Rosen, Alon
    THEORY OF CRYPTOGRAPHY, TCC 2016-A, PT I, 2016, 9562 : 525 - 541
  • [26] A quasi-optimal variant of the hybrid high-order method for elliptic partial differential equations with H-1 loads
    Ern, Alexandre
    Zanotti, Pietro
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (04) : 2163 - 2188
  • [27] Quasi-optimal model of the acoustic source
    Branski, A
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2000, 24 (09) : 685 - 693
  • [28] QUASI-OPTIMAL CHOICE OF REGULARIZED APPROXIMATION
    TIKHONOV, AN
    GLASKO, VB
    KRIKSIN, IA
    DOKLADY AKADEMII NAUK SSSR, 1979, 248 (03): : 531 - 535
  • [29] On constructing quasi-optimal robust systems
    Zotov, M. G.
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2013, 52 (05) : 677 - 685
  • [30] Influence of impulsive noise in quasi-optimal and optimal receivers
    Sánchez, M
    Domínguez, A
    6TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL III, PROCEEDINGS: IMAGE, ACOUSTIC, SPEECH AND SIGNAL PROCESSING I, 2002, : 321 - 324