Quasi-optimal partial order reduction

被引:0
|
作者
Coti, Camille [1 ]
Petrucci, Laure [1 ]
Rodriguez, Cesar [1 ,3 ]
Sousa, Marcelo [2 ]
机构
[1] Univ Sorbonne Paris Nord, CNRS, LIPN, UMR 7030, Villetaneuse, France
[2] Univ Oxford, Oxford, England
[3] Diffblue Ltd, Oxford, England
关键词
Program analysis; Dynamic analysis; Partial-order reduction; Non-interleaving semantics; PETRI NETS;
D O I
10.1007/s10703-020-00350-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A dynamic partial order reduction (DPOR) algorithm is optimal when it always explores at most one representative per Mazurkiewicz trace. Existing literature suggests that the reduction obtained by the non-optimal, state-of-the-art Source-DPOR (SDPOR) algorithm is comparable to optimal DPOR. We show the first program with O(n) Mazurkiewicz traces where SDPOR explores O(2(n)) redundant schedules. We furthermore identify the cause of this blow-up as an NP-hard problem. Our main contribution is a new approach, called Quasi-Optimal POR, that can arbitrarily approximate an optimal exploration using a provided constant k. We present an implementation of our method in a new tool called DPU using specialised data structures. Experiments with DPU, including Debian packages, show that optimality is achieved with low values of k, outperforming state-of-the-art tools.
引用
收藏
页码:3 / 33
页数:31
相关论文
共 50 条
  • [1] Quasi-optimal partial order reduction
    Camille Coti
    Laure Petrucci
    César Rodríguez
    Marcelo Sousa
    Formal Methods in System Design, 2021, 57 : 3 - 33
  • [2] Quasi-Optimal Partial Order Reduction
    Nguyen, Huyen T. T.
    Rodriguez, Cesar
    Sousa, Marcelo
    Coti, Camille
    Petrucci, Laure
    COMPUTER AIDED VERIFICATION, CAV 2018, PT II, 2018, 10982 : 354 - 371
  • [3] OPTIMAL AND QUASI-OPTIMAL DESIGNS
    Martins, Joao Paulo
    Mendonca, Sandra
    Pestana, Dinis Duarte
    REVSTAT-STATISTICAL JOURNAL, 2008, 6 (03) : 279 - 307
  • [4] Quasi-optimal model reduction of discrete-time systems
    Universite de Bretagne Occidentale, , Brest, France
    Electron Lett, 16 (1521-1522):
  • [5] Quasi-optimal model reduction of discrete-time systems
    Brehonnet, P
    Derrien, A
    Vilbe, P
    Calvez, LC
    ELECTRONICS LETTERS, 1996, 32 (16) : 1521 - 1522
  • [6] Asymptotically Quasi-Optimal Cryptography
    de Castro, Leo
    Hazay, Carmit
    Ishai, Yuval
    Vaikuntanathan, Vinod
    Venkitasubramaniam, Muthu
    ADVANCES IN CRYPTOLOGY - EUROCRYPT 2022, PT I, 2022, 13275 : 303 - 334
  • [7] QUASI-OPTIMAL FEEDBACK LAWS
    MIZUKAMI, K
    VARSAN, C
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1982, 27 (10): : 1027 - 1051
  • [8] Quasi-optimal polarization changer
    Bezborodov, V. I.
    Yanovskii, M. S.
    Knyaz'kov, B. N.
    Radioelectronics and Communications Systems, 1994, 37 (07):
  • [9] QUASI-OPTIMAL TRAINING ALGORITHMS
    TSYPKIN, YZ
    AUTOMATION AND REMOTE CONTROL, 1973, 34 (06) : 884 - 893
  • [10] Stratonovich nonlinear optimal and quasi-optimal filters
    B. I. Shakhtarin
    Journal of Communications Technology and Electronics, 2006, 51 : 1248 - 1260