Row-Strict Quasisymmetric Schur Functions

被引:15
|
作者
Mason, Sarah [1 ]
Remmel, Jeffrey [2 ]
机构
[1] Wake Forest Univ, Dept Math, Winston Salem, NC 27109 USA
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
关键词
quasisymmetric functions; Schur functions; omega transform; OPERATORS; ALGEBRAS;
D O I
10.1007/s00026-013-0216-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Haglund, Luoto, Mason, and van Willigenburg introduced a basis for quasisymmetric functions, called the quasisymmetric Schur function basis, generated combinatorially through fillings of composition diagrams in much the same way as Schur functions are generated through reverse column-strict tableaux. We introduce a new basis for quasisymmetric functions, called the row-strict quasisymmetric Schur function basis, generated combinatorially through fillings of composition diagrams in much the same way as quasisymmetic Schur functions are generated through fillings of composition diagrams. We describe the relationship between this new basis and other known bases for quasisymmetric functions, as well as its relationship to Schur polynomials. We obtain a refinement of the omega transform operator as a result of these relationships.
引用
收藏
页码:127 / 148
页数:22
相关论文
共 50 条
  • [31] Quasisymmetric graphs and Zygmund functions
    Leonid V. Kovalev
    Jani Onninen
    Journal d'Analyse Mathématique, 2012, 118 : 343 - 361
  • [32] Quasisymmetric functions distinguishing trees
    Aval, Jean-Christophe
    Djenabou, Karimatou
    Mcnamara, Peter R. W.
    ALGEBRAIC COMBINATORICS, 2023, 6 (03):
  • [33] Unimodality of Eulerian quasisymmetric functions
    Henderson, Anthony
    Wachs, Michelle L.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2012, 119 (01) : 135 - 145
  • [34] On Schur inequality and Schur functions
    Radulescu, Marius
    Radulescu, Sorin
    Alexandrescu, Petrus
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2005, 32 : 214 - 220
  • [35] Divided symmetrization and quasisymmetric functions
    Nadeau, Philippe
    Tewari, Vasu
    SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (04):
  • [36] NEW DEFINITION FOR QUASISYMMETRIC FUNCTIONS
    GOLDBERG, KP
    MICHIGAN MATHEMATICAL JOURNAL, 1974, 21 (01) : 49 - 62
  • [37] On weak peak quasisymmetric functions
    Li, Yunnan
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2018, 158 : 449 - 491
  • [38] Fundamental quasisymmetric functions in superspace
    Fishel, Susanna
    Gatica, Jessica
    Lapointe, Luc
    Pinto, Maria Elena
    EUROPEAN JOURNAL OF COMBINATORICS, 2025, 125
  • [39] Quasisymmetric graphs and Zygmund functions
    Kovalev, Leonid V.
    Onninen, Jani
    JOURNAL D ANALYSE MATHEMATIQUE, 2012, 118 : 343 - 361
  • [40] Symmetric functions, noncommutative symmetric functions, and quasisymmetric functions
    Hazewinkel, M
    ACTA APPLICANDAE MATHEMATICAE, 2003, 75 (1-3) : 55 - 83