Row-Strict Quasisymmetric Schur Functions

被引:15
|
作者
Mason, Sarah [1 ]
Remmel, Jeffrey [2 ]
机构
[1] Wake Forest Univ, Dept Math, Winston Salem, NC 27109 USA
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
关键词
quasisymmetric functions; Schur functions; omega transform; OPERATORS; ALGEBRAS;
D O I
10.1007/s00026-013-0216-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Haglund, Luoto, Mason, and van Willigenburg introduced a basis for quasisymmetric functions, called the quasisymmetric Schur function basis, generated combinatorially through fillings of composition diagrams in much the same way as Schur functions are generated through reverse column-strict tableaux. We introduce a new basis for quasisymmetric functions, called the row-strict quasisymmetric Schur function basis, generated combinatorially through fillings of composition diagrams in much the same way as quasisymmetic Schur functions are generated through fillings of composition diagrams. We describe the relationship between this new basis and other known bases for quasisymmetric functions, as well as its relationship to Schur polynomials. We obtain a refinement of the omega transform operator as a result of these relationships.
引用
收藏
页码:127 / 148
页数:22
相关论文
共 50 条
  • [1] Row-Strict Quasisymmetric Schur Functions
    Sarah Mason
    Jeffrey Remmel
    Annals of Combinatorics, 2014, 18 : 127 - 148
  • [2] Skew row-strict quasisymmetric Schur functions
    Mason, Sarah K.
    Niese, Elizabeth
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 42 (03) : 763 - 791
  • [3] Skew row-strict quasisymmetric Schur functions
    Sarah K. Mason
    Elizabeth Niese
    Journal of Algebraic Combinatorics, 2015, 42 : 763 - 791
  • [4] 0-Hecke modules for Young row-strict quasisymmetric Schur functions
    Bardwell, Joshua
    Searles, Dominic
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 102
  • [5] Row-strict dual immaculate functions
    Niese, Elizabeth
    Sundaram, Sheila
    van Willigenburg, Stephanie
    Vega, Julianne
    Wang, Shiyun
    ADVANCES IN APPLIED MATHEMATICS, 2023, 149
  • [6] 0-HECKE MODULES FOR ROW-STRICT DUAL IMMACULATE FUNCTIONS
    Niese, Elizabeth
    Sundaram, Sheila
    VAN Willigenburg, Stephanie
    Vega, Julianne
    Wang, Shiyun
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 377 (04) : 2525 - 2582
  • [7] Quasisymmetric Schur functions
    Haglund, J.
    Luoto, K.
    Mason, S.
    van Willigenburg, S.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (02) : 463 - 490
  • [8] Skew quasisymmetric Schur functions and noncommutative Schur functions
    Bessenrodt, C.
    Luoto, K.
    van Willigenburg, S.
    ADVANCES IN MATHEMATICS, 2011, 226 (05) : 4492 - 4532
  • [9] Multiplicity Free Schur, Skew Schur, and Quasisymmetric Schur Functions
    Bessenrodt, C.
    van Willigenburg, S.
    ANNALS OF COMBINATORICS, 2013, 17 (02) : 275 - 294
  • [10] Multiplicity Free Schur, Skew Schur, and Quasisymmetric Schur Functions
    C. Bessenrodt
    S. van Willigenburg
    Annals of Combinatorics, 2013, 17 : 275 - 294