Three-step nucleation of metal-organic framework nanocrystals

被引:111
|
作者
Liu, Xiangwen [1 ,2 ]
Chee, See Wee [1 ,2 ,3 ,4 ]
Raj, Sanoj [5 ]
Sawczyk, Michal [5 ]
Kral, Petr [5 ,6 ,7 ]
Mirsaidov, Utkur [1 ,2 ,3 ,4 ,8 ]
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 117551, Singapore
[2] Natl Univ Singapore, Ctr BioImaging Sci, Dept Biol Sci, Singapore 117557, Singapore
[3] Natl Univ Singapore, Ctr Adv 2D Mat, Singapore 117546, Singapore
[4] Natl Univ Singapore, Graphene Res Ctr, Singapore 117546, Singapore
[5] Univ Illinois, Dept Chem, Chicago, IL 60607 USA
[6] Univ Illinois, Dept Phys, Chicago, IL 60607 USA
[7] Univ Illinois, Dept Pharmaceut Sci, Chicago, IL 60607 USA
[8] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117575, Singapore
基金
新加坡国家研究基金会;
关键词
crystallization; nucleation; in situ TEM; MOF; ZEOLITIC IMIDAZOLATE FRAMEWORK-71; GENERAL FORCE-FIELD; CRYSTAL NUCLEATION; ELECTRON-MICROSCOPY; BUILDING UNITS; MECHANISM; GROWTH; DESIGN; TEMPERATURE; PRECURSOR;
D O I
10.1073/pnas.2008880118
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Metal-organic frameworks (MOFs) are crystalline nanoporous materials with great potential for a wide range of industrial applications. Understanding the nucleation and early growth stages of these materials from a solution is critical for their design and synthesis. Despite their importance, the pathways through which MOFs nucleate are largely unknown. Using a combination of in situ liquid-phase and cryogenic transmission electron microscopy, we show that zeolitic imidazolate framework-8 MOF nanocrystals nucleate from precursor solution via three distinct steps: 1) liquid-liquid phase separation into solute-rich and solute-poor regions, followed by 2) direct condensation of the solute-rich region into an amorphous aggregate and 3) crystallization of the aggregate into a MOF. The three-step pathway for MOF nucleation shown here cannot be accounted for by conventional nucleation models and provides direct evidence for the nonclassical nucleation pathways in open-framework materials, suggesting that a solute-rich phase is a common precursor for crystallization from a solution.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] A Mesoporous Metal-Organic Framework
    Klein, Nicole
    Senkovska, Irena
    Gedrich, Kristina
    Stoeck, Ulrich
    Henschel, Antje
    Mueller, Uwe
    Kaskel, Stefan
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (52) : 9954 - 9957
  • [42] Metal-organic framework microlasers
    Liu, Yuan
    Dong, Haiyun
    Hu, Fengqin
    Zhao, Yong Sheng
    SCIENCE BULLETIN, 2017, 62 (01) : 3 - 4
  • [43] Metal-organic framework microlasers
    Yuan Liu
    Haiyun Dong
    Fengqin Hu
    Yong Sheng Zhao
    ScienceBulletin, 2017, 62 (01) : 3 - 4
  • [44] Metal-organic framework catalysis
    Doonan, Christian J.
    Sumby, Christopher J.
    CRYSTENGCOMM, 2017, 19 (29): : 4045 - +
  • [45] Metal-Organic Framework Composites
    Fu Yanyan
    Yan Xiuping
    PROGRESS IN CHEMISTRY, 2013, 25 (2-3) : 221 - 232
  • [46] Clickable Metal-Organic Framework
    Goto, Yuta
    Sato, Hiroki
    Shinkai, Seiji
    Sada, Kazuki
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (44) : 14354 - +
  • [47] Metal-Organic Framework Nanoparticles
    Wang, Shunzhi
    McGuirk, C. Michael
    d'Aquino, Andrea
    Mason, Jarad A.
    Mirkin, Chad A.
    ADVANCED MATERIALS, 2018, 30 (37)
  • [48] A Chemiluminescent Metal-Organic Framework
    Ruehle, Bastian
    Virmani, Erika
    Engelke, Hanna
    Hinterholzinger, Florian M.
    von Zons, Tobias
    Brosent, Birte
    Bein, Thomas
    Godt, Adelheid
    Wuttke, Stefan
    CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (25) : 6349 - 6354
  • [49] Metal-organic framework composites
    Zhu, Qi-Long
    Xu, Qiang
    CHEMICAL SOCIETY REVIEWS, 2014, 43 (16) : 5468 - 5512
  • [50] Metal-Organic Framework Magnets
    Thorarinsdottir, Agnes E.
    Harris, T. David
    CHEMICAL REVIEWS, 2020, 120 (16) : 8716 - 8789