Relevant linear feature extraction using side-information and unlabeled data

被引:2
|
作者
Wu, F [1 ]
Zhou, YL [1 ]
Zhang, CS [1 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing, Peoples R China
关键词
D O I
10.1109/ICPR.2004.1334596
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning with side-information is attracting more and more attention in machine learning problems. In this paper we propose a general iterative framework for relevant linear feature extraction. It efficiently utilizes both the side-information and unlabeled data to enhance gradually algorithms' performance and robustness. Both good relevant feature extraction and reasonable similarity matrix estimation can be realized. Specifically, we adopt Relevant Component Analysis (RCA) under this framework and get the derived Iterative Self Enhanced Relevant Component Analysis (ISERCA) algorithm. The experimental results on several data sets show that ISERCA outperforms RCA.
引用
收藏
页码:582 / 585
页数:4
相关论文
共 50 条
  • [21] Linear Discriminant Feature Extraction Using Weighted Classification Confusion Information
    Lee, Hung-Shin
    Chen, Berlin
    INTERSPEECH 2008: 9TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2008, VOLS 1-5, 2008, : 2254 - 2257
  • [22] Linear feature extraction from point cloud using color information
    Alshawabkeh, Yahya
    HERITAGE SCIENCE, 2020, 8 (01)
  • [23] Using CoTraining and Semantic Feature Extraction for Positive and Unlabeled Text Classification
    Luo, Na
    Yuan, Fuyu
    Zuo, Wanli
    2008 INTERNATIONAL SEMINAR ON FUTURE INFORMATION TECHNOLOGY AND MANAGEMENT ENGINEERING, PROCEEDINGS, 2008, : 218 - +
  • [24] Optimal Scalar Linear Index Codes for One-Sided Neighboring Side-Information Problems
    Vaddi, Mahesh Babu
    Rajan, B. Sundar
    2016 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2016,
  • [25] IoT Information Status Using Data Fusion and Feature Extraction Method
    Saranya, S. S.
    Fatima, N. Sabiyath
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (01): : 1857 - 1874
  • [26] Maximization of mutual information for supervised linear feature extraction
    Leiva-Murillo, Jose Miguel
    Artes-Rodriguez, Antonio
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2007, 18 (05): : 1433 - 1441
  • [27] Meta-Prod2Vec-Product Embeddings Using Side-Information for Recommendation
    Vasile, Flavian
    Smirnova, Elena
    Conneau, Alexis
    PROCEEDINGS OF THE 10TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'16), 2016, : 225 - 232
  • [28] Combining Chinese Spoken Term Detection Systems via Side-information Conditioned Linear Logistic Regression
    Meng, Sha
    Zhang, Wei-Qiang
    Liu, Jia
    11TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2010 (INTERSPEECH 2010), VOLS 1-2, 2010, : 685 - 688
  • [29] A genetic algorithm for accomplishing feature extraction of hyperspectral data using texture information
    Viaña, R
    Malpica, JA
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING V, 1999, 3871 : 367 - 372
  • [30] Automatic Model Evaluation using Feature Importance Patterns on Unlabeled Data
    Silva, Ismael Santana
    Veloso, Adriano
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,